A271383 a(n) is the smallest k such that there are exactly n primes between k*(k-1) and k^2 and exactly n primes between k^2 and k*(k+1), or 0 if no such k exists.
2, 8, 13, 21, 32, 38, 46, 60, 85, 74, 102, 111
Offset: 1
Examples
For n = 6: 38*(38-1) = 1406, 38^2 = 1444 and 38*(38+1) = 1482. A000720(1444) - A000720(1406) = 6 and A000720(1482) - A000720(1444) = 6. Since 38 is the smallest k where the number of primes in both intervals is 6, a(6) = 38.
Links
- Wikipedia, Oppermann's conjecture.
Programs
-
Mathematica
Table[SelectFirst[Range[10^3], And[PrimePi[#^2] - PrimePi[# (# - 1)] == n, PrimePi[# (# + 1)] - PrimePi[#^2] == n] &], {n, 30}] /. k_ /; MissingQ@ k -> 0 (* Michael De Vlieger, Apr 09 2016, Version 10.2 *)
-
PARI
a(n) = my(k=1); while((primepi(k^2)-primepi(k*(k-1)))!=n || (primepi(k*(k+1))-primepi(k^2))!=n, k++); k
Extensions
Escape clause added to definition by Chai Wah Wu, Apr 17 2021
Comments