cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271391 Expansion of (1 + x + 2*x^2 + 6*x^3 + x^4 + x^5)/(1 - x^2)^3.

Original entry on oeis.org

1, 1, 5, 9, 13, 25, 25, 49, 41, 81, 61, 121, 85, 169, 113, 225, 145, 289, 181, 361, 221, 441, 265, 529, 313, 625, 365, 729, 421, 841, 481, 961, 545, 1089, 613, 1225, 685, 1369, 761, 1521, 841, 1681, 925, 1849, 1013, 2025, 1105, 2209, 1201, 2401, 1301, 2601, 1405
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2016

Keywords

Comments

Centered square numbers alternating with odd squares.

Examples

			Illustration of initial terms:
                                                      o
                            o       o o o o o       o o o
          o     o o o     o o o     o o o o o     o o o o o
o   o   o o o   o o o   o o o o o   o o o o o   o o o o o o o
          o     o o o     o o o     o o o o o     o o o o o
                            o       o o o o o       o o o
                                                      o
0   1     2       3         4           5             6
		

Crossrefs

Programs

  • Maple
    a:=series((1+x+2*x^2+6*x^3+x^4+x^5)/(1-x^2)^3,x=0,55): seq(coeff(a,x,n),n=0..54); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 1, 5, 9, 13, 25}, 55]
    Table[(3 n^2 + 2 n + 2 + (-1)^n (-n^2 + 2 n + 2))/4, {n, 0, 54}]
  • PARI
    x='x+O('x^99); Vec((1+x+2*x^2+6*x^3+x^4+x^5)/(1-x^2)^3) \\ Altug Alkan, Apr 06 2016

Formula

E.g.f.: ((2 + x*(2 + x))*cosh(x) + x*(3 + 2*x)*sinh(x))/2.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
a(n) = (3*n^2 + 2*n + 2 + (-1)^n*(-n^2 + 2*n + 2))/4.
a(2n) = A001844(n). a(2n+1) = (2n+1)^2.