cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271426 Number of set partitions of [n] with minimal block length multiplicity equal to one.

Original entry on oeis.org

0, 1, 1, 4, 11, 51, 132, 771, 3089, 18388, 96423, 627529, 3349018, 24510305, 155908651, 1171494200, 8647906143, 71603237483, 572103586280, 5172888505403, 43344865682187, 416735802793600, 3830340992280773, 38239507035358011, 374336654847685014
Offset: 0

Views

Author

Alois P. Heinz, Apr 07 2016

Keywords

Comments

At least one block length occurs exactly once.

Examples

			a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
		

Crossrefs

Column k=1 of A271424.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
            *b(n-i*j, i-1, k)/j!, j={0,$k..n/i})))
        end:
    a:= n-> b(n$2, 1)-b(n$2, 2):
    seq(a(n), n=0..30);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
    a[n_] := b[n, n, 1] - b[n, n, 2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 07 2018, after Alois P. Heinz *)

Formula

a(n) = A271424(n,1).