A271426 Number of set partitions of [n] with minimal block length multiplicity equal to one.
0, 1, 1, 4, 11, 51, 132, 771, 3089, 18388, 96423, 627529, 3349018, 24510305, 155908651, 1171494200, 8647906143, 71603237483, 572103586280, 5172888505403, 43344865682187, 416735802793600, 3830340992280773, 38239507035358011, 374336654847685014
Offset: 0
Keywords
Examples
a(1) = 1: 1. a(2) = 1: 12. a(3) = 4: 123, 12|3, 13|2, 1|23. a(4) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Wikipedia, Partition of a set
Crossrefs
Column k=1 of A271424.
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, k)/j!, j={0,$k..n/i}))) end: a:= n-> b(n$2, 1)-b(n$2, 2): seq(a(n), n=0..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]]; a[n_] := b[n, n, 1] - b[n, n, 2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 07 2018, after Alois P. Heinz *)
Formula
a(n) = A271424(n,1).
Comments