A271441 a(1) = 2; if gpf(a(n-1)) <= n-1 then a(n) = a(n-1) + a(gpf(a(n-1))), else a(n) = a(n-1) + 1, where gpf(m) is the greatest prime factor of m.
2, 3, 4, 7, 8, 11, 12, 16, 19, 20, 28, 40, 48, 52, 100, 108, 112, 124, 125, 133, 258, 259, 260, 308, 336, 348, 349, 350, 362, 363, 391, 651, 1042, 1043, 1044, 1406, 1407, 1408, 1436, 1437, 1438, 1439, 1440, 1448, 1449, 1709, 1710, 1835, 1836, 1948
Offset: 1
Examples
Since a(11) = 28, gpf(28) = 7 and a(7) = 12, then a(12) = 28 + 12 = 40.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A006530 (gpf).
Programs
-
Mathematica
Nest[Append[#, (x = #[[-1]]) + If[(p = FactorInteger[x][[-1, 1]]) <= Length@#, #[[p]], 1]] &, {2}, 49] (* Ivan Neretin, Jan 27 2017 *)
-
PARI
gpf(n) = if (n==1, 1, vecmax(factor(n)[,1])); lista(nn) = {va = vector(nn); print1(va[1] = 2, ", "); for (n=2, nn, if (gpf(va[n-1]) <= n-1, va[n] = va[n-1] + va[gpf(va[n-1])], va[n] = va[n-1]+1); print1(va[n], ", "););} \\ Michel Marcus, Apr 09 2016
Comments