A271443
Earliest start of a run of n numbers divisible by a cube larger than one.
Original entry on oeis.org
8, 80, 1375, 22624, 18035622, 4379776620, 1204244328624, 2604639091138248, 2604639091138248
Offset: 1
a(9) = 2604639091138248 and the following 8 numbers are divisible by 2^3, 11^3, 5^3, 17^3, 7^3, 13^3, 3^3, 19^3, and 2^4, respectively.
A271444
Smallest of 4 consecutive numbers each divisible by a cube greater than one.
Original entry on oeis.org
22624, 355374, 885624, 912247, 1558248, 1642624, 1728375, 1761991, 2068373, 2485375, 2948373, 2987872, 3072248, 3073623, 3243750, 3571749, 3744872, 3772248, 3916374, 4231248, 4442877, 4503247, 4730373, 4757750, 5301125, 5344623, 5516125, 5812477, 6017247
Offset: 1
a(1)=22624 is the smallest cubeful number followed by other 3 cubeful numbers. They are divisible by 2^5, 5^3, 3^3, and 11^3, respectively.
-
cubQ[n_] := Max[Last /@ FactorInteger[n]] > 2; Select[Range[10^6], cubQ[#] && cubQ[# + 1] && cubQ[# + 2] && cubQ[# + 3] &]
SequencePosition[Table[If[AnyTrue[Rest[Divisors[n]],IntegerQ[CubeRoot[#]]&],1,0],{n,61*10^5}],{1,1,1,1}][[;;,1]] (* Harvey P. Dale, Jan 05 2025 *)
A271446
Smallest of 6 consecutive numbers each divisible by a cube.
Original entry on oeis.org
4379776620, 6329354875, 16620507123, 54089484125, 55072893248, 66519175371, 68769514373, 80566783622, 87372290871, 91351389622, 99156598496, 105748687372, 112806598372, 114265205871, 117243671750, 148257477247, 155970667499, 174404710246, 177398391245
Offset: 1
a(1) = 4379776620 is the smallest cubeful number followed by other 5 cubeful numbers. They are divisible by 29^3, 11^3, 13^3, 3^3, 2^4, and 5^3, respectively.
A271447
Smallest of 7 consecutive numbers each divisible by a cube.
Original entry on oeis.org
1204244328624, 4224987665871, 17911333617875, 18105599700248, 20656510708125, 20917131156124, 21707874550623, 30199064929748, 30517770625623, 32526295907749, 43865182834744, 47130022943124, 48617303189245, 50499660546373, 53555917697500, 53971309892123
Offset: 1
a(1) = 1204244328624 is the smallest cubeful number followed by other 4 cubeful numbers. They are divisible by 2^4, 5^3, 19^3, 3^3, 11^4, 37^3, and 7^3, respectively.
Showing 1-4 of 4 results.
Comments