A271451 Triangle read by rows of coefficients of polynomials Q_n(x) = 2^(-n)*((x + sqrt(x*(x + 6) - 3) + 1)^n - (x - sqrt(x*(x + 6) - 3) + 1)^n)/sqrt(x*(x + 6) - 3).
1, 1, 1, 0, 3, 1, -1, 3, 5, 1, -1, -1, 10, 7, 1, 0, -6, 7, 21, 9, 1, 1, -6, -10, 31, 36, 11, 1, 1, 1, -29, 7, 79, 55, 13, 1, 0, 9, -24, -63, 81, 159, 78, 15, 1, -1, 9, 15, -123, -54, 264, 279, 105, 17, 1, -1, -1, 57, -69, -321, 132, 624, 447, 136, 19, 1, 0, -12, 50, 126, -459, -507, 741, 1245, 671, 171, 21, 1, 1, -12, -20, 302, -81, -1419, -258, 2163, 2227, 959, 210, 23, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 0, 3, 1; -1, 3, 5, 1; -1, -1, 10, 7, 1; ... The first few polynomials are: Q_0(x) = 0; Q_1(x) = 1; Q_2(x) = x + 1; Q_3(x) = x^2 + 3*x; Q_4(x) = x^3 + 5*x^2 + 3*x - 1; Q_5(x) = x^4 + 7*x^3 + 10*x^2 - x - 1, ...
Links
- G. C. Greubel, Table of n, a(n) for the first 101 rows, flattened
- Ilya Gutkovskiy, Polynomials Q_n(x)
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial
Crossrefs
Cf. A049310.
Programs
-
Mathematica
Flatten[Table[CoefficientList[((x + Sqrt[x (x + 6) - 3] + 1)^n - (x - Sqrt[x (x + 6) - 3] + 1)^n)/2^n/Sqrt[x (x + 6) - 3], x], {n, 0, 13}]]
Comments