A271466 Number T(n,k) of set partitions of [n] such that k is the largest element of the last block; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 0, 2, 0, 1, 4, 0, 1, 4, 10, 0, 1, 6, 15, 30, 0, 1, 10, 29, 59, 104, 0, 1, 18, 63, 139, 250, 406, 0, 1, 34, 149, 365, 692, 1145, 1754, 0, 1, 66, 375, 1039, 2110, 3627, 5649, 8280, 0, 1, 130, 989, 3149, 6932, 12521, 20085, 29874, 42294, 0, 1, 258, 2703, 10039, 24190, 46299, 77133, 117488, 168509, 231950
Offset: 1
Examples
T(1,1) = 1: 1. T(2,2) = 2: 12, 1|2. T(3,2) = 1: 13|2. T(3,3) = 4: 123, 12|3, 1|23, 1|2|3. T(4,2) = 1: 134|2. T(4,3) = 4: 124|3, 14|23, 14|2|3, 1|24|3. T(4,4) = 10: 1234, 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4. T(5,2) = 1: 1345|2. T(5,3) = 6: 1245|3, 145|23, 145|2|3, 14|25|3, 15|24|3, 1|245|3. T(5,4) = 15: 1235|4, 125|34, 125|3|4, 12|35|4, 135|24, 135|2|4, 13|25|4, 15|234, 15|23|4, 1|235|4, 15|2|34, 1|25|34, 15|2|3|4, 1|25|3|4, 1|2|35|4. Triangle T(n,k) begins: 1; 0, 2; 0, 1, 4; 0, 1, 4, 10; 0, 1, 6, 15, 30; 0, 1, 10, 29, 59, 104; 0, 1, 18, 63, 139, 250, 406; 0, 1, 34, 149, 365, 692, 1145, 1754; 0, 1, 66, 375, 1039, 2110, 3627, 5649, 8280; 0, 1, 130, 989, 3149, 6932, 12521, 20085, 29874, 42294; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Wikipedia, Partition of a set
Crossrefs
Columns k=1-10 give: A000007(n-1), A054977(n-2), A052548(n-3) for n>3, A271743, A271744, A271745, A271746, A271747, A271748, A271749.
Main diagonal gives A186021(n-1).
Lower diagonals d=1-10 give: A271752, A271753, A271754, A271755, A271756, A271757, A271758, A271759, A271760, A271761.
Row sums give A000110.
T(2n,n) gives A271467.
T(2n+1,n+1) gives A271607.
Programs
-
Maple
b:= proc(n, m, c) option remember; `if`(n=0, x^c, add( b(n-1, max(m, j), `if`(j>=m, n, c)), j=1..m+1)) end: T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n-1))(b(n, 0$2)): seq(T(n), n=1..12);
-
Mathematica
b[n_, m_, c_] := b[n, m, c] = If[n == 0, x^c, Sum[b[n-1, Max[m, j], If[j >= m, n, c]], {j, 1, m+1}]]; T[n_] := Function[p, Table[Coefficient[p, x, n-i], {i, 0, n-1}]][b[n, 0, 0]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)
Formula
T(n,n) = 2 * A000110(n-1) = 2 * Sum_{j=0..n-1} T(n-1,j) for n>1.
Comments