cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271466 Number T(n,k) of set partitions of [n] such that k is the largest element of the last block; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 1, 4, 10, 0, 1, 6, 15, 30, 0, 1, 10, 29, 59, 104, 0, 1, 18, 63, 139, 250, 406, 0, 1, 34, 149, 365, 692, 1145, 1754, 0, 1, 66, 375, 1039, 2110, 3627, 5649, 8280, 0, 1, 130, 989, 3149, 6932, 12521, 20085, 29874, 42294, 0, 1, 258, 2703, 10039, 24190, 46299, 77133, 117488, 168509, 231950
Offset: 1

Views

Author

Alois P. Heinz, Apr 08 2016

Keywords

Comments

Each set partition is written as a sequence of blocks, ordered by the smallest elements in the blocks.

Examples

			T(1,1) = 1: 1.
T(2,2) = 2: 12, 1|2.
T(3,2) = 1: 13|2.
T(3,3) = 4: 123, 12|3, 1|23, 1|2|3.
T(4,2) = 1: 134|2.
T(4,3) = 4: 124|3, 14|23, 14|2|3, 1|24|3.
T(4,4) = 10: 1234, 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4.
T(5,2) = 1: 1345|2.
T(5,3) = 6: 1245|3, 145|23, 145|2|3, 14|25|3, 15|24|3, 1|245|3.
T(5,4) = 15: 1235|4, 125|34, 125|3|4, 12|35|4, 135|24, 135|2|4, 13|25|4, 15|234, 15|23|4, 1|235|4, 15|2|34, 1|25|34, 15|2|3|4, 1|25|3|4, 1|2|35|4.
Triangle T(n,k) begins:
  1;
  0, 2;
  0, 1,   4;
  0, 1,   4,  10;
  0, 1,   6,  15,   30;
  0, 1,  10,  29,   59,  104;
  0, 1,  18,  63,  139,  250,   406;
  0, 1,  34, 149,  365,  692,  1145,  1754;
  0, 1,  66, 375, 1039, 2110,  3627,  5649,  8280;
  0, 1, 130, 989, 3149, 6932, 12521, 20085, 29874, 42294;
  ...
		

Crossrefs

Columns k=1-10 give: A000007(n-1), A054977(n-2), A052548(n-3) for n>3, A271743, A271744, A271745, A271746, A271747, A271748, A271749.
Main diagonal gives A186021(n-1).
Lower diagonals d=1-10 give: A271752, A271753, A271754, A271755, A271756, A271757, A271758, A271759, A271760, A271761.
Row sums give A000110.
T(2n,n) gives A271467.
T(2n+1,n+1) gives A271607.
Cf. A095149 (k is maximum of the first block), A113547 (k is minimum of the last block).

Programs

  • Maple
    b:= proc(n, m, c) option remember; `if`(n=0, x^c, add(
          b(n-1, max(m, j), `if`(j>=m, n, c)), j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n-1))(b(n, 0$2)):
    seq(T(n), n=1..12);
  • Mathematica
    b[n_, m_, c_] := b[n, m, c] = If[n == 0, x^c, Sum[b[n-1, Max[m, j], If[j >= m, n, c]], {j, 1, m+1}]];
    T[n_] := Function[p, Table[Coefficient[p, x, n-i], {i, 0, n-1}]][b[n, 0, 0]];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)

Formula

T(n,n) = 2 * A000110(n-1) = 2 * Sum_{j=0..n-1} T(n-1,j) for n>1.