A271472 Binary representation of n in base i-1.
0, 1, 1100, 1101, 111010000, 111010001, 111011100, 111011101, 111000000, 111000001, 111001100, 111001101, 100010000, 100010001, 100011100, 100011101, 100000000, 100000001, 100001100, 100001101, 110011010000, 110011010001, 110011011100, 110011011101, 110011000000, 110011000001
Offset: 0
References
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 172. (See also exercise 16, p. 177; answer, p. 494.)
- W. J. Penney, A "binary" system for complex numbers, JACM 12 (1965), 247-248.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, Table of n, (I-1)^n for n=0..100
- Wikipedia, Complex-base system
Crossrefs
Cf. A066321.
Programs
-
PARI
a(n) = my(v = [n,0], x=0, digit=0, a, b); while(v!=[0,0], a=v[1]; b=v[2]; v[1]=-2*(a\2)+b; v[2]=-(a\2); x+=(a%2)*10^digit; digit++); x \\ Jianing Song, Jan 22 2023; [a,b] represents the number a + b*(-1+i)
-
Python
from gmpy2 import c_divmod u = ('0000','1000','0011','1011') def A271472(n): if n == 0: return 0 else: s, q = '', n while q: q, r = c_divmod(q, -4) s += u[r] return int(s[::-1]) # Chai Wah Wu, Apr 09 2016
Comments