A271487 Maximal term of TRIP-Stern sequence of level n corresponding to permutation triple (e,13,132).
1, 2, 3, 4, 6, 8, 11, 17, 23, 32, 48, 65, 90, 136, 184, 255, 385, 521, 722, 1090, 1475, 2044, 3086, 4176, 5787, 8737, 11823, 16384, 24736, 33473, 46386, 70032, 94768, 131327, 198273, 268305, 371810, 561346, 759619, 1052660, 1589270
Offset: 0
Links
- I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239v1 [math.CO] 17 Sep 2015. See Conjecture 5.8.
Crossrefs
Programs
-
Maple
A271487T := proc(n) option remember; local an ; if n = 1 then [1,1,1] ; else an := procname(floor(n/2)) ; if type(n,'even') then # apply F0 [op(1,an)+op(3,an),op(3,an),op(2,an)] ; else # apply F1 [op(2,an),op(1,an)+op(3,an),op(1,an)] ; end if; end if; end proc; A271487 := proc(n) local a,l,nmax; a := 0 ; for l from 2^n to 2^(n+1)-1 do nmax := max( op(A271487T(l)) ); a := max(a,nmax) ; end do: a ; end proc: # R. J. Mathar, Apr 16 2016
-
Mathematica
A271487T[n_] := A271487T[n] = Module[{an}, If[n == 1 , {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[1]] + an[[3]], an[[3]], an[[2]]}, {an[[2]], an[[1]] + an[[3]], an[[1]]}]]]; a[n_] := a[n] = Module[{a = 0, l, nMax}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, nMax = Max[A271487T[l]]; a = Max[a, nMax]]; a]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 24}] (* Jean-François Alcover, Nov 17 2017, after R. J. Mathar *)
Formula
Conjectures from Colin Barker, Apr 16 2016: (Start)
a(n) = 2*a(n-3)+2*a(n-6)+a(n-9) for n>9.
G.f.: (1+x)*(1+x+2*x^2+2*x^4+x^6+x^8) / (1-2*x^3-2*x^6-x^9).
(End)
Extensions
More terms from Jean-François Alcover, Nov 17 2017
a(25)-a(40) from Lars Blomberg, Jan 08 2018