A276533 Least prime p with A271518(p) = n.
5, 2, 19, 127, 17, 67, 163, 41, 89, 101, 131, 313, 257, 211, 227, 461, 241, 401, 613, 337, 433, 353, 577, 467, 863, 887, 617, 787, 601, 569, 761, 641, 823, 673, 857, 1217, 881, 1091, 1289, 977, 1427, 1097, 1801, 929, 1153, 953, 1321, 1049, 1747, 1409
Offset: 1
Keywords
Examples
a(1) = 5 since 5 is the first prime which can be written in a unique way as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integer and x + 3*y + 5*z a square; in fact, 5 = 1^2 + 0^2 + 0^2 + 2^2 with 1 + 3*0 + 5*0 = 1^2. a(2) = 2 since 2 = 1^2 + 0^2 + 0^2 + 1^2 with 1 + 3*0 + 5*0 = 1^2, and 2 = 1^2 + 1^2 + 0^2 + 0^2 with 1 + 3*1 + 5*0 = 2^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..500
- J. Friedlander and H. Iwaniec, The polynomial x^2 + y^4 captures its primes, arXiv:math/9811185 [math.NT], 1998; Ann. of Math. 148 (1998), 945-1040.
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; Do[m=0;Label[aa];m=m+1;r=0;Do[If[SQ[Prime[m]-x^2-y^2-z^2]&&SQ[x+3y+5z],r=r+1;If[r>n,Goto[aa]]],{x,0,Sqrt[Prime[m]]},{y,0,Sqrt[Prime[m]-x^2]},{z,0,Sqrt[Prime[m]-x^2-y^2]}];If[r
Comments