A271561 a(n) = G_n(14), where G is the Goodstein function defined in A266201.
14, 110, 1281, 18750, 326591, 5862840, 134404971, 3487116548, 100000555551, 3138429262496, 106993206736331, 3937376387710451, 155568095560708189, 6568408355716958693, 295147905179358418247, 14063084452067732533983, 708235345355337686361209, 37589973457545958206423881
Offset: 0
Examples
G_1(14) = B_2(14)-1 = B_2(2^(2+1)+2^2+2)-1 = 3^(3+1)+3^3+3-1 = 110; G_2(14) = B_3(3^(3+1)+3^3+2)-1 = 4^(4+1)+4^4+2-1 = 1281; G_3(14) = B_4(4^(4+1)+4^4+1)-1 = 5^(5+1)+5^5+1-1 = 18750; G_4(14) = B_5(5^(5+1)+5^5)-1 = 6^(6+1)+6^6-1 = 326591.
Links
- Nicholas Matteo, Table of n, a(n) for n = 0..383
Crossrefs
Programs
-
PARI
lista(nn) = {print1(a = 14, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
Comments