A271586 Number of squares in Z_n[i].
1, 2, 5, 4, 9, 10, 25, 8, 37, 18, 61, 20, 49, 50, 45, 24, 81, 74, 181, 36, 125, 122, 265, 40, 121, 98, 329, 100, 225, 90, 481, 88, 305, 162, 225, 148, 361, 362, 245, 72, 441, 250, 925, 244, 333, 530, 1105, 120, 1177, 242, 405, 196, 729, 658, 549, 200, 905, 450, 1741, 180, 961, 962, 925, 344, 441, 610, 2245
Offset: 1
Examples
The squares in Z_3[i] are 0, i, 2i, 1 and 2, therefore a(3)=5.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A000224.
Programs
-
Mathematica
GG[M_, s_] :=Table[Mod[(a + b I)^s, M], {a, M}, {b, M}] // Flatten // Union // Length; Table[GG[M, 2], {M, 1, 144}]
-
PARI
a(n)={my(v=vector(n)); for(i=0, n-1, for(j=0, n-1, my(k=(i^2-j^2)%n + 1); v[k]=bitor(v[k], 1<<((2*i*j)%n)))); sum(j=1, n, hammingweight(v[j]))} \\ Andrew Howroyd, Aug 01 2018
Extensions
Keyword:mult added by Andrew Howroyd, Aug 01 2018
Comments