cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271586 Number of squares in Z_n[i].

Original entry on oeis.org

1, 2, 5, 4, 9, 10, 25, 8, 37, 18, 61, 20, 49, 50, 45, 24, 81, 74, 181, 36, 125, 122, 265, 40, 121, 98, 329, 100, 225, 90, 481, 88, 305, 162, 225, 148, 361, 362, 245, 72, 441, 250, 925, 244, 333, 530, 1105, 120, 1177, 242, 405, 196, 729, 658, 549, 200, 905, 450, 1741, 180, 961, 962, 925, 344, 441, 610, 2245
Offset: 1

Views

Author

Keywords

Comments

Equivalently, the number of distinct pairs (x^2-y^2, 2*x*y) mod n. - Andrew Howroyd, Aug 01 2018

Examples

			The squares in Z_3[i] are 0, i, 2i, 1 and 2, therefore a(3)=5.
		

Crossrefs

Cf. A000224.

Programs

  • Mathematica
    GG[M_, s_] :=Table[Mod[(a +  b I)^s, M], {a, M}, {b, M}] // Flatten // Union // Length; Table[GG[M, 2], {M, 1, 144}]
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, for(j=0, n-1, my(k=(i^2-j^2)%n + 1); v[k]=bitor(v[k], 1<<((2*i*j)%n)))); sum(j=1, n, hammingweight(v[j]))} \\ Andrew Howroyd, Aug 01 2018

Extensions

Keyword:mult added by Andrew Howroyd, Aug 01 2018