A271654 a(n) = Sum_{k|n} binomial(n-1,k-1).
1, 2, 2, 5, 2, 17, 2, 44, 30, 137, 2, 695, 2, 1731, 1094, 6907, 2, 30653, 2, 97244, 38952, 352739, 2, 1632933, 10628, 5200327, 1562602, 20357264, 2, 87716708, 2, 303174298, 64512738, 1166803145, 1391282, 4978661179, 2, 17672631939, 2707475853, 69150651910, 2, 286754260229, 2, 1053966829029, 115133177854, 4116715363847, 2, 16892899722499, 12271514, 63207357886437
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Sep 28 2022: (Start) The a(1) = 1 through a(6) = 17 compositions with integer mean: (1) (2) (3) (4) (5) (6) (1,1) (1,1,1) (1,3) (1,1,1,1,1) (1,5) (2,2) (2,4) (3,1) (3,3) (1,1,1,1) (4,2) (5,1) (1,1,4) (1,2,3) (1,3,2) (1,4,1) (2,1,3) (2,2,2) (2,3,1) (3,1,2) (3,2,1) (4,1,1) (1,1,1,1,1,1) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..3329
Programs
-
Maple
a:= n-> add(binomial(n-1, d-1), d=numtheory[divisors](n)): seq(a(n), n=1..50); # Alois P. Heinz, Dec 03 2023
-
Mathematica
Table[Length[Join @@ Permutations/@Select[IntegerPartitions[n],IntegerQ[Mean[#]]&]],{n,15}] (* Gus Wiseman, Sep 28 2022 *)
-
PARI
a(n)=sumdiv(n,k,binomial(n-1,k-1))
Comments