A271676 Prime powers k such that 3k + 4 is a perfect square.
4, 7, 32, 64
Offset: 1
Examples
4 is in this sequence because 3*4 + 4 = 16 = 4^2, 7 is in this sequence because 3*7 + 4 = 25 = 5^2, 32 is in this sequence because 3*32 + 4 = 100 = 10^2, 64 is in this sequence because 3*64 + 4 = 196 = 14^2.
Links
- Altug Alkan, Proof of Fini and Full
Programs
-
Magma
[n: n in [2..10000000] | IsPrimePower(n) and IsSquare(3*n + 4)];
-
Mathematica
Select[Range[10^4], PrimePowerQ@ # && IntegerQ@ Sqrt[3 # + 4] &] (* Michael De Vlieger, Apr 12 2016 *)
-
PARI
lista(nn) = for(n=1, nn, if(isprimepower(n) && issquare(3*n+4), print1(n, ", "))); \\ Altug Alkan, Apr 12 2016
Comments