A271700 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j-1,-n-1)*S1(k,j), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.
1, 1, 1, 1, 2, 3, 1, 3, 6, 16, 1, 4, 10, 30, 115, 1, 5, 15, 50, 205, 1021, 1, 6, 21, 77, 336, 1750, 10696, 1, 7, 28, 112, 518, 2814, 17766, 128472, 1, 8, 36, 156, 762, 4308, 28050, 207942, 1734447, 1, 9, 45, 210, 1080, 6342, 42528, 322860, 2746815, 25937683
Offset: 0
Examples
Triangle starts: [1] [1, 1] [1, 2, 3] [1, 3, 6, 16] [1, 4, 10, 30, 115] [1, 5, 15, 50, 205, 1021] [1, 6, 21, 77, 336, 1750, 10696] [1, 7, 28, 112, 518, 2814, 17766, 128472]
Crossrefs
Programs
-
Maple
T := (n,k) -> add(abs(Stirling1(k,j))*binomial(-j-1,-n-1)*(-1)^(n-j),j=0..n); seq(seq(T(n,k), k=0..n), n=0..9);
-
Mathematica
Flatten[Table[Sum[(-1)^(n-j)Binomial[-j-1,-n-1] Abs[StirlingS1[k,j]],{j,0,n}], {n,0,9},{k,0,n}]]