cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271703 Triangle read by rows: the unsigned Lah numbers T(n, k) = binomial(n-1, k-1)*n!/k! if n > 0 and k > 0, T(n, 0) = 0^n and otherwise 0, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 36, 12, 1, 0, 120, 240, 120, 20, 1, 0, 720, 1800, 1200, 300, 30, 1, 0, 5040, 15120, 12600, 4200, 630, 42, 1, 0, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 0, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1
Offset: 0

Views

Author

Peter Luschny, Apr 14 2016

Keywords

Comments

The Lah numbers can be seen as the case m=1 of the family of triangles T_{m}(n,k) = T_{m}(n-1,k-1)+(k^m+(n-1)^m)*T_{m}(n-1,k) (see the link 'Partition transform').
This is the Sheffer triangle (lower triangular infinite matrix) (1, x/(1-x)), an element of the Jabotinsky subgroup of the Sheffer group. - Wolfdieter Lang, Jun 12 2017

Examples

			As a rectangular array (diagonals of the triangle):
  1,      1,       1,       1,       1,       1,       ... A000012
  0,      2,       6,       12,      20,      30,      ... A002378
  0,      6,       36,      120,     300,     630,     ... A083374
  0,      24,      240,     1200,    4200,    11760,   ... A253285
  0,      120,     1800,    12600,   58800,   211680,  ...
  0,      720,     15120,   141120,  846720,  3810240, ...
A000007, A000142, A001286, A001754, A001755,  A001777.
The triangle T(n,k) begins:
n\k 0       1        2        3        4       5      6     7    8  9 10 ...
0:  1
1:  0       1
2:  0       2        1
3:  0       6        6        1
4:  0      24       36       12        1
5:  0     120      240      120       20       1
6:  0     720     1800     1200      300      30      1
7:  0    5040    15120    12600     4200     630     42     1
8:  0   40320   141120   141120    58800   11760   1176    56    1
9:  0  362880  1451520  1693440   846720  211680  28224  2016   72  1
10: 0 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90  1
...  - _Wolfdieter Lang_, Jun 12 2017
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., pp. 312, 552.
  • I. Lah, Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik, Mitt.-Bl. Math. Statistik, 7:203-213, 1955.
  • T. Mansour, M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, CRC Press, 2016

Crossrefs

Variants: A008297 the main entry for these numbers, A105278, A111596 (signed).
A000262 (row sums). Largest number of the n-th row in A002868.

Programs

  • Maple
    T := (n, k) -> `if`(n=k, 1, binomial(n-1,k-1)*n!/k!):
    seq(seq(T(n, k), k=0..n), n=0..9);
  • Mathematica
    T[n_, k_] := Binomial[n, k]*FactorialPower[n-1, n-k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
  • Sage
    @cached_function
    def T(n,k):
        if k<0 : return 0
        if k==n: return 1
        return T(n-1,k-1) + (k+n-1)*T(n-1,k)
    for n in (0..8): print([T(n,k) for k in (0..n)])

Formula

For a collection of formulas see the 'Lah numbers' link.
T(n, k) = A097805(n, k)*n!/k! = (-1)^k*P_{n, k}(1,1,1,...) where P_{n, k}(s) is the partition transform of s.
T(n, k) = coeff(n! * P(n), x, k) with P(n) = (1/n)*(Sum_{k=0..n-1}(x(n-k)*P(k))), for n >= 1 and P(n=0) = 1, with x(n) = n*x. See A036039. - Johannes W. Meijer, Jul 08 2016
From Wolfdieter Lang, Jun 12 2017: (Start)
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (that is egf of the triangle) is exp(x*t/(1-t)) (a Sheffer triangle of the Jabotinsky type).
E.g.f. column k: (t/(1-t))^k/k!.
Three term recurrence: T(n, k) = T(n-1, k-1) + (n-1+k)*T(n, k-1), n >= 1, k = 0..n, with T(0, 0) =1, T(n, -1) = 0, T(n, k) = 0 if n < k.
T(n, k) = binomial(n, k)*fallfac(x=n-1, n-k), with fallfac(x, n) = Product_{j=0..(n-1)} (x - j), for n >= 1, and 0 for n = 0.
risefac(x, n) = Sum_{k=0..n} T(n, k)*fallfac(k), with risefac(x, n) = Product_{j=0..(n-1)} (x + j), for n >= 1, and 0 for n = 0.
See Graham et al., exercise 31, p. 312, solution p. 552. (End)
Formally, let f_n(x) = Sum_{k>n} (k-1)!*x^k; then f_n(x) = Sum_{k=0..n} T(n, k)* x^(n+k)*f_0^((k))(x), where ^((k)) stands for the k-th derivative. - Luc Rousseau, Dec 27 2020
T(n, k) = Sum_{j=k..n} A354795(n, j)*A360177(j, k). - Mélika Tebni, Feb 02 2023
T(n, k) = binomial(n, k)*(n-1)!/(k-1)! for n, k > 0. - Chai Wah Wu, Nov 30 2023