A271703 Triangle read by rows: the unsigned Lah numbers T(n, k) = binomial(n-1, k-1)*n!/k! if n > 0 and k > 0, T(n, 0) = 0^n and otherwise 0, for n >= 0 and 0 <= k <= n.
1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 36, 12, 1, 0, 120, 240, 120, 20, 1, 0, 720, 1800, 1200, 300, 30, 1, 0, 5040, 15120, 12600, 4200, 630, 42, 1, 0, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 0, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1
Offset: 0
Examples
As a rectangular array (diagonals of the triangle): 1, 1, 1, 1, 1, 1, ... A000012 0, 2, 6, 12, 20, 30, ... A002378 0, 6, 36, 120, 300, 630, ... A083374 0, 24, 240, 1200, 4200, 11760, ... A253285 0, 120, 1800, 12600, 58800, 211680, ... 0, 720, 15120, 141120, 846720, 3810240, ... A000007, A000142, A001286, A001754, A001755, A001777. The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 0 1 2: 0 2 1 3: 0 6 6 1 4: 0 24 36 12 1 5: 0 120 240 120 20 1 6: 0 720 1800 1200 300 30 1 7: 0 5040 15120 12600 4200 630 42 1 8: 0 40320 141120 141120 58800 11760 1176 56 1 9: 0 362880 1451520 1693440 846720 211680 28224 2016 72 1 10: 0 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 1 ... - _Wolfdieter Lang_, Jun 12 2017
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., pp. 312, 552.
- I. Lah, Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik, Mitt.-Bl. Math. Statistik, 7:203-213, 1955.
- T. Mansour, M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, CRC Press, 2016
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- M. F. Hasler and Peter Luschny, Formulas for A271703, OEIS Wiki, Aug. 2017.
- S. A. Joni, G.-C. Rota, and B. Sagan, From sets to functions: Three elementary examples, Discrete Mathematics, Volume 37, Issues 2-3, 1981, 193-202.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- D. E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78.
- Peter Luschny, Lah numbers
- Peter Luschny, Partition transform
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See. p. 18.
- Piotr Miska and Maciej Ulas, On some properties of the number of permutations being products of pairwise disjoint d-cycles, arXiv:1904.03395 [math.NT], 2019.
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 12.
Crossrefs
Programs
-
Maple
T := (n, k) -> `if`(n=k, 1, binomial(n-1,k-1)*n!/k!): seq(seq(T(n, k), k=0..n), n=0..9);
-
Mathematica
T[n_, k_] := Binomial[n, k]*FactorialPower[n-1, n-k]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
-
Sage
@cached_function def T(n,k): if k<0 : return 0 if k==n: return 1 return T(n-1,k-1) + (k+n-1)*T(n-1,k) for n in (0..8): print([T(n,k) for k in (0..n)])
Formula
For a collection of formulas see the 'Lah numbers' link.
T(n, k) = A097805(n, k)*n!/k! = (-1)^k*P_{n, k}(1,1,1,...) where P_{n, k}(s) is the partition transform of s.
T(n, k) = coeff(n! * P(n), x, k) with P(n) = (1/n)*(Sum_{k=0..n-1}(x(n-k)*P(k))), for n >= 1 and P(n=0) = 1, with x(n) = n*x. See A036039. - Johannes W. Meijer, Jul 08 2016
From Wolfdieter Lang, Jun 12 2017: (Start)
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (that is egf of the triangle) is exp(x*t/(1-t)) (a Sheffer triangle of the Jabotinsky type).
E.g.f. column k: (t/(1-t))^k/k!.
Three term recurrence: T(n, k) = T(n-1, k-1) + (n-1+k)*T(n, k-1), n >= 1, k = 0..n, with T(0, 0) =1, T(n, -1) = 0, T(n, k) = 0 if n < k.
T(n, k) = binomial(n, k)*fallfac(x=n-1, n-k), with fallfac(x, n) = Product_{j=0..(n-1)} (x - j), for n >= 1, and 0 for n = 0.
risefac(x, n) = Sum_{k=0..n} T(n, k)*fallfac(k), with risefac(x, n) = Product_{j=0..(n-1)} (x + j), for n >= 1, and 0 for n = 0.
See Graham et al., exercise 31, p. 312, solution p. 552. (End)
Formally, let f_n(x) = Sum_{k>n} (k-1)!*x^k; then f_n(x) = Sum_{k=0..n} T(n, k)* x^(n+k)*f_0^((k))(x), where ^((k)) stands for the k-th derivative. - Luc Rousseau, Dec 27 2020
T(n, k) = binomial(n, k)*(n-1)!/(k-1)! for n, k > 0. - Chai Wah Wu, Nov 30 2023
Comments