A111596 The matrix inverse of the unsigned Lah numbers A271703.
1, 0, 1, 0, -2, 1, 0, 6, -6, 1, 0, -24, 36, -12, 1, 0, 120, -240, 120, -20, 1, 0, -720, 1800, -1200, 300, -30, 1, 0, 5040, -15120, 12600, -4200, 630, -42, 1, 0, -40320, 141120, -141120, 58800, -11760, 1176, -56, 1, 0, 362880, -1451520, 1693440, -846720, 211680, -28224, 2016, -72, 1
Offset: 0
Examples
Binomial convolution of row polynomials: p(3,x) = 6*x-6*x^2+x^3; p(2,x) = -2*x+x^2, p(1,x) = x, p(0,x) = 1, together with those from A111595: s(3,x) = 9*x-6*x^2+x^3; s(2,x) = 1-2*x+x^2, s(1,x) = x, s(0,x) = 1; therefore 9*(x+y)-6*(x+y)^2+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = (6*y-6*y^2+y^3) + 3*x*(-2*y+y^2) + 3*(1-2*x+x^2)*y + 9*x-6*x^2+x^3. From _Wolfdieter Lang_, Apr 28 2014: (Start) The triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 0: 1 1: 0 1 2: 0 -2 1 3: 0 6 -6 1 4: 0 -24 36 -12 1 5: 0 120 -240 120 -20 1 6: 0 -720 1800 -1200 300 -30 1 7: 0 5040 -15120 12600 -4200 630 -42 1 ... For more rows see the link. (End)
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- Wolfdieter Lang, The first 11 rows of the triangle.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Paul Barry, The Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms, J. Int. Seq. 13 (2010) # 10.8.4, example 4.
- Paul Barry, Exponential Riordan Arrays and Permutation Enumeration, J. Int. Seq. 13 (2010) # 10.9.1, example 6.
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 20.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv preprint arXiv:1105.3044 [math.CO], 2011, also J. Int. Seq. 14 (2011) 11.6.7.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers; Generators, Inversion, and Matrix, Binomial, and Integral Transforms; Lagrange a la Lah
- A. Hennessy and P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2.
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Mathoverflow, Pochhammer symbol of a differential, and hypergeometric polynomials, a question posed by Emilio Pisanty and answered by Tom Copeland, 2012.
- J. Taylor, Counting words with Laguerre polynomials, DMTCS Proc., Vol. AS, 2013, p. 1131-1142. [_Tom Copeland_, Jan 08 2016] [Broken link]
- J. Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 96. [_Tom Copeland_, Dec 20 2018]
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. BellMatrix(n -> `if`(n::odd, -(n+1)!, (n+1)!), 9); # Peter Luschny, Jan 27 2016
-
Mathematica
a[0, 0] = 1; a[n_, m_] := ((-1)^(n-m))*(n!/m!)*Binomial[n-1, m-1]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *) T[ n_, k_] := (-1)^n n! Coefficient[ LaguerreL[ n, -1, x], x, k]; (* Michael Somos, Dec 15 2014 *) rows = 9; t = Table[(-1)^(n+1) n!, {n, 1, rows}]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
PARI
{T(n, k) = if( n<1 || k<1, n==0 && k==0, (-1)^n * n! * polcoeff( sum(k=1, n, binomial( n-1, k-1) * (-x)^k / k!), k))}; /* Michael Somos, Dec 15 2014 */
-
Sage
lah_number = lambda n, k: factorial(n-k)*binomial(n,n-k)*binomial(n-1,n-k) A111596_row = lambda n: [(-1)^(n-k)*lah_number(n, k) for k in (0..n)] for n in range(10): print(A111596_row(n)) # Peter Luschny, Oct 05 2014
-
Sage
# uses[inverse_bell_transform from A264429] def A111596_matrix(dim): fact = [factorial(n) for n in (1..dim)] return inverse_bell_transform(dim, fact) A111596_matrix(10) # Peter Luschny, Dec 20 2015
Formula
E.g.f. m-th column: ((x/(1+x))^m)/m!, m>=0.
E.g.f. for row polynomials p(n, x) is exp(x*y/(1+y)).
a(n, m) = ((-1)^(n-m))*|A008297(n, m)| = ((-1)^(n-m))*(n!/m!)*binomial(n-1, m-1), n>=m>=1; a(0, 0)=1; else 0.
a(n, m) = -(n-1+m)*a(n-1, m) + a(n-1, m-1), n>=m>=0, a(n, -1):=0, a(0, 0)=1; a(n, m)=0 if n
|a(n,m)| = Sum_{k=m..n} |S1(n,k)|*S2(k,m), n>=0. S2(n,m):=A048993. S1(n,m):=A048994. - Wolfdieter Lang, May 04 2007
From Tom Copeland, Nov 21 2011: (Start)
For this Lah triangle, the n-th row polynomial is given umbrally by
(-1)^n n! binomial(-Bell.(-x),n), where Bell_n(-x)= exp(x)(xd/dx)^n exp(-x), the n-th Bell / Touchard / exponential polynomial with neg. arg., (cf. A008277). E.g., 2! binomial(-Bell.(-x),2) = -Bell.(-x)*(-Bell.(-x)-1) = Bell_2(-x)+Bell_1(-x) = -2x+x^2.
A Dobinski relation is (-1)^n n! binomial(-Bell.(-x),n)= (-1)^n n! e^x Sum_{j>=0} (-1)^j binomial(-j,n)x^j/j!= n! e^x Sum_{j>=0} (-1)^j binomial(j-1+n,n)x^j/j!. See the Copeland link for the relation to inverse Mellin transform. (End)
The n-th row polynomial is (-1/x)^n e^x (x^2*D_x)^n e^(-x). - Tom Copeland, Oct 29 2012
Let f(.,x)^n = f(n,x) = x!/(x-n)!, the falling factorial,and r(.,x)^n = r(n,x) = (x-1+n)!/(x-1)!, the rising factorial, then the Lah polynomials, Lah(n,t)= n!*Sum{k=1..n} binomial(n-1,k-1)(-t)^k/k! (extra sign factor on odd rows), give the transform Lah(n,-f(.,x))= r(n,x), and Lah(n,r(.,x))= (-1)^n * f(n,x). - Tom Copeland, Oct 04 2014
|T(n,k)| = Sum_{j=0..2*(n-k)} A254881(n-k,j)*k^j/(n-k)!. Note that A254883 is constructed analogously from A254882. - Peter Luschny, Feb 10 2015
The T(n,k) are the inverse Bell transform of [1!,2!,3!,...] and |T(n,k)| are the Bell transform of [1!,2!,3!,...]. See A264428 for the definition of the Bell transform and A264429 for the definition of the inverse Bell transform. - Peter Luschny, Dec 20 2015
Dividing each n-th diagonal by n!, where the main diagonal is n=1, generates a shifted, signed Narayana matrix A001263. - Tom Copeland, Sep 23 2020
Extensions
New name using a comment from Wolfdieter Lang by Peter Luschny, May 10 2021
A002868 Largest number in n-th row of triangle of Lah numbers (A008297 and A271703).
1, 1, 2, 6, 36, 240, 1800, 15120, 141120, 1693440, 21772800, 299376000, 4390848000, 68497228800, 1133317785600, 19833061248000, 396661224960000, 8299373322240000, 181400588328960000, 4135933413900288000, 98228418580131840000, 2426819753156198400000
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
Programs
-
Haskell
a002868 n = if n == 0 then 1 else maximum $ map abs $ a008297_row n -- Reinhard Zumkeller, Sep 30 2014
-
Maple
with(combinat): for n from 0 to 35 do big := 1: for m from 1 to n do if big < n!*binomial(n-1,m-1)/m! then big := n!*binomial(n-1,m-1)/m! fi: od: printf(`%d,`,big): od:
-
Mathematica
a[n_] := ( big = 1; For[ m = 1 , m <= n, m++, b = n!*Binomial[n - 1, m - 1]/m!; If[ big < b , big = b ]]; big); Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Sep 21 2012, after Maple *)
Formula
For 2 <= n <= 7, equals (n+1)!*n/2. - Alexander R. Povolotsky, Oct 16 2006
Extensions
More terms from James Sellers, Jan 03 2001
A059110 Triangle T = A007318*A271703; T(n,m)= Sum_{i=0..n} L'(n,i)*binomial(i,m), m=0..n.
1, 1, 1, 3, 4, 1, 13, 21, 9, 1, 73, 136, 78, 16, 1, 501, 1045, 730, 210, 25, 1, 4051, 9276, 7515, 2720, 465, 36, 1, 37633, 93289, 85071, 36575, 8015, 903, 49, 1, 394353, 1047376, 1053724, 519456, 137270, 20048, 1596, 64, 1, 4596553, 12975561
Offset: 0
Comments
L'(n,i) are unsigned Lah numbers (cf. A008297): L'(n,i)=n!/i!*binomial(n-1,i-1) for i >= 1, L'(0,0)=1, L'(n,0)=0 for n>0. T(n,0)=A000262(n); T(n,2)=A052852(n). Row sums A052897.
Exponential Riordan array [e^(x/(1-x)),x/(1-x)]. - Paul Barry, Apr 28 2007
From Wolfdieter Lang, Jun 22 2017: (Start)
The inverse matrix T^(-1) is exponential Riordan (aka Sheffer) (e^(-x), x/(1+x)): T^(-1)(n, m) = (-1)^(n-m)*A271705(n, m).
Examples
The triangle T = A007318*A271703 starts: n\m 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: 1 1 2: 3 4 1 3: 13 21 9 1 4: 73 136 78 16 1 5: 501 1045 730 210 25 1 6: 4051 9276 7515 2720 465 36 1 7: 37633 93289 85071 36575 8015 903 49 1 8: 394353 1047376 1053724 519456 137270 20048 1596 64 1 9: 4596553 12975561 14196708 7836276 2404206 427518 44436 2628 81 1 ... reformatted. - _Wolfdieter Lang_, Jun 22 2017 E.g.f. for T(n, 2) = 1/2!*(x/(1-x))^2*e^(x/(x-1)) = 1*x^2/2 + 9*x^3/3! + 78*x^4/4! + 730*x^5/5! + 7515*x^6/6 + ... From _Wolfdieter Lang_, Jun 22 2017: (Start) The z-sequence starts: [1, 1/2, -2/3, 3/4, -4/5, 5/6, -6/7, 7/8, -8/9, ... T recurrence: T(3, 0) = 3*(1*T(2,0) + (1/2)*T(2, 1) + (-2/3)*T(2 ,1)) = 3*(3 + (1/2)*4 - (2/3)) = 13; T(3, 1) = 3*(T(2, 0)/1 + T(2, 1)) = 3*(3 + 4) = 21. Meixner type recurrence for R(2, x): (D - D^2)*(3 + 4*x + x^2) = 4 + 2*x - 2 = 2*(1 + x), (D = d/dx). General Sheffer recurrence for R(2, x): (1+x)*(1 + 2*D + D^2)*(1 + x) = (1+x)*(1 + x + 2) = 3 + 4*x + x^2. (End)
Links
- Muniru A Asiru, Rows n=0..50 of triangle, flattened
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- Index entries for sequences related to Laguerre polynomials
Programs
-
GAP
Concatenation([1],Flat(List([1..10],n->List([0..n],m->Sum([0..n],i-> Factorial(n)/Factorial(i)*Binomial(n-1,i-1)*Binomial(i,m)))))); # Muniru A Asiru, Jul 25 2018
-
Magma
A059110:= func< n,k | n eq 0 select 1 else Factorial(n-1)*Binomial(n,k)*Evaluate(LaguerrePolynomial(n-1, 1-k), -1) >; [A059110(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 23 2021
-
Maple
Lprime := proc(n,i) if n = 0 and i = 0 then 1; elif k = 0 then 0 ; else n!/i!*binomial(n-1,i-1) ; end if; end proc: A059110 := proc(n,k) add(Lprime(n,i)*binomial(i,k),i=0..n) ; end proc: # R. J. Mathar, Mar 15 2013
-
Mathematica
(* First program *) lp[n_, i_] := Binomial[n-1, i-1]*n!/i!; lp[0, 0] = 1; t[n_, m_] := Sum[lp[n, i]*Binomial[i, m], {i, 0, n}]; Table[t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Mar 26 2013 *) (* Second program *) A059110[n_, k_]:= If[n==0, 1, (n-1)!*Binomial[n, k]*LaguerreL[n-1, 1-k, -1]]; Table[A059110[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 23 2021 *)
-
Sage
def A059110(n, k): return 1 if n==0 else factorial(n-1)*binomial(n, k)*gen_laguerre(n-1, 1-k, -1) flatten([[A059110(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 23 2021
Formula
E.g.f. for column m: (1/m!)*(x/(1-x))^m*e^(x/(x-1)), m >= 0.
From Wolfdieter Lang, Jun 22 2017: (Start)
E.g.f. for row polynomials in powers of x (e.g.f. of the triangle): exp(z/(1-z))* exp(x*z/(1-z)) (exponential Riordan).
Recurrence: T(n, 0) = Sum_{j=0} z(j)*T(n-1, j), n >= 1, with z(n) = (-1)^(n+1)*A028310(n), T(0, 0) = 1, T(n, m) = 0 n < m, T(n, m) = n*(T(n-1, m-1)/m + T(n-1, m)), n >= m >= 1 (from the z- and a-sequence, see a comment above).
Meixner type recurrence for the (monic) row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m: Sum_{k=0..n-1} (-1)^k*D^(k+1)*R(n, x) = n*R(n-1, x), n >=1, R(0, x) = 1, with D = d/dx.
General Sheffer recurrence: R(n, x) = (x+1)*(1+D)^2*R(n-1, x), n >=1, R(0, x) = 1.
(End)
P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of this entry; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - Tom Copeland, Jul 18 2018
From G. C. Greubel, Feb 23 2021: (Start)
T(n, k) = (n-1)!*binomial(n, k)*LaguerreL(n-1, 1-k, -1) with T(0, 0) = 1.
Sum_{k=0..n} T(n, k) = A052897(n). (End)
A271705 Triangle read by rows, T(n,k) = Sum_{j=0..n} C(n,j)*L(j,k), L the unsigned Lah numbers A271703, for n>=0 and 0<=k<=n.
1, 1, 1, 1, 4, 1, 1, 15, 9, 1, 1, 64, 66, 16, 1, 1, 325, 490, 190, 25, 1, 1, 1956, 3915, 2120, 435, 36, 1, 1, 13699, 34251, 23975, 6755, 861, 49, 1, 1, 109600, 328804, 283136, 101990, 17696, 1540, 64, 1, 1, 986409, 3452436, 3534636, 1554966, 342846, 40404, 2556, 81, 1
Offset: 0
Comments
This is the Sheffer (aka exponential Riordan) matrix T = P*L = A007318*A271703 = (exp(x), x/(1-x)). Note that P = A007318 is Sheffer (exp(t), t) (of the Appell type). The Sheffer a-sequence is [1,1,repeat(0)] and the z-sequence has e.g.f. (x/(1+x))*(1 - exp(-x/(1+x)) given in A288869 / A000027. Because the column k=0 has only entries 1, the z-sequence gives fractional representations of 1. See A288869. - Wolfdieter Lang, Jun 20 2017
Examples
Triangle starts: 1; 1, 1; 1, 4, 1; 1, 15, 9, 1; 1, 64, 66, 16, 1; 1, 325, 490, 190, 25, 1; 1, 1956, 3915, 2120, 435, 36, 1; ... Recurrence: T(3, 2) = (3/2)*4 + 3*1 = 9. - _Wolfdieter Lang_, Jun 20 2017
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
Crossrefs
Programs
-
Magma
B:=Binomial; A271705:= func< n,k | k eq 0 select 1 else (&+[B(n, j+k)*B(j+k, k)*B(j+k-1, k-1)*Factorial(j): j in [0..n-k]]) >; [A271705(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 09 2022
-
Maple
L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*binomial(n,n-k)*binomial(n-1,n-k)): T := (n,k) -> add(L(j,k)*binomial(-j-1,-n-1)*(-1)^(n-j), j=0..n): seq(seq(T(n,k), k=0..n), n=0..9);
-
Mathematica
T[n_, k_]:= If[k==0, 1, Sum[((k*j!)/(j+k))*Binomial[n, j+k]*Binomial[j+k, k]^2, {j,0,n-k}]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 09 2022 *)
-
Sage
b=binomial def A271705(n,k): return 1 if (k==0) else sum(factorial(j-k)*b(n, j)*b(j, k)*b(j-1, k-1) for j in (k..n)) flatten([[A271705(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 09 2022
Formula
From Wolfdieter Lang, Jun 20 2017: (Start)
T(n, k) = Sum_{m=k..n} A007318(n, m)*A271703(m, k), n >= k >= 0, and 0 for k < m. See also the name.
E.g.f. of column k: exp(x)*(x/(1-x))^k/k! (Sheffer property), k >= 0.
E.g.f. of triangle (or row polynomials in x): exp(z)*exp(x*z/(1-z)).
Recurrence for T(n, k), k >= 1, with T(n, 0) = 1, T(n, k) = 0 if n < k: T(n, k) = (n/k)*T(n-1, k-1) + n*T(n-1, k), n >= 1, k = 1..n. (From the a-sequence with column k=0 as input.) (End)
T(n, k) = Sum_{j=0..n-k} j!*binomial(n, j+k)*binomial(j+k, k)*binomial(j+k-1, k-1) with T(n, 0) = 1. - G. C. Greubel, Jan 09 2022
From Natalia L. Skirrow, Jun 11 2025: (Start)
T(n, k) = C(n, k)*hypergeom([k-n, k], [], -1), which equals C(n, k)*A143409(n-k, k-1) for k>0.
By the saddle point method upon the e.g.f., n-th row polynomial converges with n (for all y) to n^n*exp(2*sqrt(n*y) - n - y/2 + 1)/sqrt(2*sqrt(n/y)); as such, the n-th row's expectation is ~ sqrt(n)-1/4 and the n-th row's variance is ~ (sqrt(n)-1)/2. (End)
A288869 Numerators of z-sequence for the Sheffer matrix T = P*Lah = A271703 = A007318*A271703 = (exp(t), t/(1-t)).
1, -1, 4, -21, 136, -1045, 9276, -93289, 1047376, -12975561, 175721140, -2581284541, 40864292184, -693347907421, 12548540320876, -241253367679185, 4909234733857696, -105394372192969489, 2380337795595885156
Offset: 0
Comments
The denominators seem to be the natural numbers A000027.
The z-sequence gives the recurrence for column k=0 entries of the triangle T = A271703 (using also lower rows of T): T(n, 0) = Sum_{j=0..n-1} z(j)*T(n-1, j), n >=1, with T(0, 0) = 1. Because column k=0 has e.g.f. exp(x) all entries T(n, 0) = 1, and one obtains rational representations of 1 by the z-sequence recurrence. See the examples.
Examples
The rationals r(n) begin: 1, -1/2, 4/3, -21/4, 136/5, -1045/6, 9276/7, -93289/8, 1047376/9, -12975561/10, 175721140/11, -2581284541/12, 40864292184/13, -693347907421/14, 12548540320876/15, ... Recurrence with T= P*Lah = A271703, rational representations of 1: 1 = T(2, 0) = 2*(1*T(1, 0) + (-1/2)*T(1, 1)) = 2*(1 - 1/2) = 1. 1 = T(3, 0) = 3*(1*1 + (-1/2)*4 + (4/3)*1) = 1. 1 = T(4, 0) = 4*(1*1 + (-1/2)*15 + (4/3)*9 + (-21/4)*1) = 1. ...
Links
Programs
-
Magma
[1] cat [(-1)^n*Factorial(n+1)*Evaluate(LaguerrePolynomial(n+1, -2), -1): n in [1..30]]; // G. C. Greubel, Jan 09 2022
-
Mathematica
Table[If[n==0, 1, (-1)^n*(n+1)!*LaguerreL[n+1, -2, -1]], {n, 0, 30}] (* G. C. Greubel, Jan 09 2022 *)
-
PARI
a(n) = if (n, (-1)^n*(n+1)!*subst(pollaguerre(n+1, -2), x, -1), 1); \\ Michel Marcus, Jan 09 2022
-
Sage
[1]+[(-1)^n*factorial(n+1)*gen_laguerre(n+1, -2, -1) for n in (1..30)] # G. C. Greubel, Jan 09 2022
Formula
E.g.f. for the rationals r(n): ((1+x)/x)*(1 - exp(-x/(1+x))).
a(n) = numerator(r(n)) (in lowest terms).
From G. C. Greubel, Jan 09 2022: (Start)
a(n) = (-1)^n * (n+1)! * Laguerre(n+1, -2, -1), with a(0) = 1.
a(n) = (-1)^n * (n+1)! * Sum_{j=0..n-1} binomial(n-1, j)/(j+2)!, with a(0) = 1. (End)
A344050 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*|Lah(n, k)|. Inverse binomial convolution of the unsigned Lah numbers A271703.
1, 1, -3, 1, 73, -699, 3001, 24697, -783999, 10946233, -80958779, -656003919, 40097528857, -944102982419, 14449693290033, -81180376526759, -4110744092532479, 203618771909117937, -5868277577182238579, 117997016943575159713, -1055340561026036009559, -45279878749358024400299
Offset: 0
Keywords
Programs
-
Maple
aList := proc(len) local lah; lah := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1)*n!/k!): seq(add((-1)^(n-k)*binomial(n, k)*lah(n, k), k = 0..n), n = 0..len-1) end: print( aList(22) );
-
Mathematica
a[n_] := (-1)^(n-1) n n! HypergeometricPFQ[{1 - n, 1 - n}, {2, 2}, -1]; a[0] := 1; Table[a[n], {n, 0, 20}]
Formula
a(n) = (-1)^(n-1)*n*n!*hypergeom([1 - n, 1 - n], [2, 2], -1) for n >= 1.
A355004 a(n) = Sum_{k=0..n} A271703(k + n, n), row sums of A355005.
1, 3, 43, 1333, 63321, 4034341, 321994723, 30869387193, 3454384526353, 441903886812721, 63608031487665171, 10174227287873082853, 1790258521269694523113, 343669522619597368671933, 71473405251333054552561091, 16008271911444915765782477041, 3841639137772270982094393928353
Offset: 0
Keywords
Programs
-
Maple
L := (n, k) -> ifelse(n = k, 1, binomial(n-1, k-1)*n! / k!): seq(add(L(n + k, n), k = 0..n), n = 0..16);
-
Mathematica
Table[Sum[Binomial[n + k, n]*FactorialPower[n + k - 1, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 15 2022 *)
Formula
a(n) = A187535(n) * hypergeom([1, -n], [1 - 2*n, -2*n], -1).
From Vaclav Kotesovec, Jun 15 2022: (Start)
Recurrence: (n-1)^2 * n * (64*n^4 - 464*n^3 + 1244*n^2 - 1475*n + 663)*a(n) = (n-1)*(2*n-3)*(512*n^6 - 3968*n^5 + 11872*n^4 - 17336*n^3 + 12880*n^2 - 4597*n + 617)*a(n-1) + (2048*n^7 - 19968*n^6 + 78912*n^5 - 163216*n^4 + 191140*n^3 - 128857*n^2 + 48842*n - 8937)*a(n-2) + 4*(2*n-5)*(2*n-3)*(64*n^4 - 208*n^3 + 236*n^2 - 123*n + 32)*a(n-3).
a(n) ~ 2^(4*n - 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)). (End)
A372348 a(n) = Sum_{j=0..n} p(n - j, j) where p(n, x) = Sum_{k=0..n} k! * Lah(n, k) * x^k where Lah = A271703.
1, 1, 2, 7, 40, 329, 3550, 47755, 777812, 15048925, 341018314, 8946278015, 268923178720, 9176058440977, 352386991982390, 15115253160180019, 719367763801641580, 37767206102310829445, 2176271214087106315042, 137024328250953628940455, 9388717924596833591237624
Offset: 0
Keywords
Crossrefs
Cf. A271703.
Programs
-
Maple
Lah := (n, k) -> ifelse(n = k, 1, binomial(n-1, k-1)*n!/k!): p := n -> local k; add(k!*Lah(n, k)*x^k, k = 0..n): a := n -> local j; add(subs(x=j, p(n - j)), j = 0..n): seq((a(n)), n = 0..21);
A271704 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*L(j,k), L the unsigned Lah numbers A271703, for n>=0 and 0<=k<=n.
1, 0, 1, 0, 3, 1, 0, 11, 8, 1, 0, 49, 57, 15, 1, 0, 261, 424, 174, 24, 1, 0, 1631, 3425, 1930, 410, 35, 1, 0, 11743, 30336, 21855, 6320, 825, 48, 1, 0, 95901, 294553, 259161, 95235, 16835, 1491, 63, 1, 0, 876809, 3123632, 3251500, 1452976, 325150, 38864, 2492, 80, 1
Offset: 0
Examples
Triangle starts: [1] [0, 1] [0, 3, 1] [0, 11, 8, 1] [0, 49, 57, 15, 1] [0, 261, 424, 174, 24, 1] [0, 1631, 3425, 1930, 410, 35, 1] [0, 11743, 30336, 21855, 6320, 825, 48, 1]
Programs
-
Maple
L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*binomial(n,n-k)*binomial(n-1,n-k)): T := (n,k) -> add(L(j,k)*binomial(-j,-n)*(-1)^(n-j), j=0..n): seq(seq(T(n,k), k=0..n), n=0..9);
Formula
From Natalia L. Skirrow, Jun 12 2025: (Start)
Definition can also be written Sum_{j=0..n} C(n-1, j-1)*L(j, k), where C(n, -1) = (1 if n = -1 else 0) over integer n.
E.g.f. for sequence b(n, k) = T(n+1, k+1): F/(1-x)^2, where F = exp(x + y*x/(1-x)) is e.g.f. of A271705.
E.g.f. for kth column of b: exp(x)*x^(k-1)/(1-x)^(k+1)/(k-1)!. (These cannot be integrated with x to give e.g.f.s for T(n, k) using standard functions.)
T(n, k) = Sum_{i=0..n-k} (n-1)_i*(i+1)*A271705(n-1-i, k-1), where (n)_i = n!/(n-i)! is the falling factorial. (End)
A271706 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(-j-1, -n-1)*L(j, k), L the unsigned Lah numbers A271703, for n >= 0 and 0 <= k <= n.
1, -1, 1, 1, 0, 1, -1, 3, 3, 1, 1, 8, 18, 8, 1, -1, 45, 110, 70, 15, 1, 1, 264, 795, 640, 195, 24, 1, -1, 1855, 6489, 6335, 2485, 441, 35, 1, 1, 14832, 59332, 67984, 32550, 7504, 868, 48, 1, -1, 133497, 600732, 789852, 445914, 126126, 19068, 1548, 63, 1
Offset: 0
Examples
Triangle starts: [ 1] [-1, 1] [ 1, 0, 1] [-1, 3, 3, 1] [ 1, 8, 18, 8, 1] [-1, 45, 110, 70, 15, 1] [ 1, 264, 795, 640, 195, 24, 1] [-1, 1855, 6489, 6335, 2485, 441, 35, 1]
Crossrefs
Programs
-
Maple
L := (n, k) -> `if`(k<0 or k>n, 0, (n-k)!*binomial(n, n-k)*binomial(n-1, n-k)): T := (n, k) -> add(L(j, k)*binomial(-j-1,-n-1), j=0..n): seq(seq(T(n, k), k=0..n), n=0..9); # Or: T := (n, k) -> (-1)^(n-k)*binomial(n, k)*hypergeom([k-n, k], [], 1): for n from 0 to 8 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Jun 25 2025
Formula
T(n, k) = (-1)^(k-n)*binomial(n, k)*hypergeom([k-n, k], [], 1). (After a formula of Natalia L. Skirrow in A271705.) - Peter Luschny, Jun 25 2025
Comments