cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A048994 Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -6, 11, -6, 1, 0, 24, -50, 35, -10, 1, 0, -120, 274, -225, 85, -15, 1, 0, 720, -1764, 1624, -735, 175, -21, 1, 0, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 0, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1, 0, -362880, 1026576, -1172700, 723680, -269325, 63273, -9450, 870, -45, 1
Offset: 0

Views

Author

Keywords

Comments

The unsigned numbers are also called Stirling cycle numbers: |s(n,k)| = number of permutations of n objects with exactly k cycles.
Mirror image of the triangle A054654. - Philippe Deléham, Dec 30 2006
Also the triangle gives coefficients T(n,k) of x^k in the expansion of C(x,n) = (a(k)*x^k)/n!. - Mokhtar Mohamed, Dec 04 2012
From Wolfdieter Lang, Nov 14 2018: (Start)
This is the Sheffer triangle of Jabotinsky type (1, log(1 + x)). See the e.g.f. of the triangle below.
This is the inverse Sheffer triangle of the Stirling2 Sheffer triangle A008275.
The a-sequence of this Sheffer triangle (see a W. Lang link in A006232)
is from the e.g.f. A(x) = x/(exp(x) -1) a(n) = Bernoulli(n) = A027641(n)/A027642(n), for n >= 0. The z-sequence vanishes.
The Boas-Buck sequence for the recurrences of columns has o.g.f. B(x) = Sum_{n>=0} b(n)*x^n = 1/((1 + x)*log(1 + x)) - 1/x. b(n) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), b = {-1/2, 5/12, -3/8, 251/720, -95/288, 19087/60480,...}. For the Boas-Buck recurrence of Riordan and Sheffer triangles see the Aug 10 2017 remark in A046521, adapted to the Sheffer case, also for two references. See the recurrence and example below. (End)
Let G(n,m,k) be the number of simple labeled graphs on [n] with m edges and k components. Then T(n,k) = Sum (-1)^m*G(n,m,k). See the Read link below. Equivalently, T(n,k) = Sum mu(0,p) where the sum is over all set partitions p of [n] containing k blocks and mu is the Moebius function in the incidence algebra associated to the set partition lattice on [n]. - Geoffrey Critzer, May 11 2024

Examples

			Triangle begins:
  n\k 0     1       2       3      4      5      6    7    8   9 ...
  0   1
  1   0     1
  2   0    -1       1
  3   0     2      -3       1
  4   0    -6      11      -6      1
  5   0    24     -50      35    -10      1
  6   0  -120     274    -225     85    -15      1
  7   0   720   -1764    1624   -735    175    -21    1
  8   0 -5040   13068  -13132   6769  -1960    322  -28    1
  9   0 40320 -109584  118124 -67284  22449  -4536  546  -36   1
  ... - _Wolfdieter Lang_, Aug 22 2012
------------------------------------------------------------------
From _Wolfdieter Lang_, Nov 14 2018: (Start)
Recurrence: s(5,2)= s(4, 1) - 4*s(4, 2) = -6 - 4*11 = -50.
Recurrence from the a- and z-sequences: s(6, 3) = 2*(1*1*(-50) + 3*(-1/2)*35 + 6*(1/6)*(-10) + 10*0*1) = -225.
Boas-Buck recurrence for column k = 3, with b = {-1/2, 5/12, -3/8, ...}:
s(6, 3) = 6!*((-3/8)*1/3! + (5/12)*(-6)/4! + (-1/2)*35/5!) = -225. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245.
  • J. Riordan, An Introduction to Combinatorial Analysis, p. 48.

Crossrefs

See especially A008275 which is the main entry for this triangle. A132393 is an unsigned version, and A008276 is another version.
A000142(n) = Sum_{k=0..n} |s(n, k)| for n >= 0.
Row sums give A019590(n+1).

Programs

  • Haskell
    a048994 n k = a048994_tabl !! n !! k
    a048994_row n = a048994_tabl !! n
    a048994_tabl = map fst $ iterate (\(row, i) ->
    (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 0)
    -- Reinhard Zumkeller, Mar 18 2013
  • Maple
    A048994:= proc(n,k) combinat[stirling1](n,k) end: # R. J. Mathar, Feb 23 2009
    seq(print(seq(coeff(expand(k!*binomial(x,k)),x,i),i=0..k)),k=0..9); # Peter Luschny, Jul 13 2009
    A048994_row := proc(n) local k; seq(coeff(expand(pochhammer(x-n+1,n)), x,k), k=0..n) end: # Peter Luschny, Dec 30 2010
  • Mathematica
    Table[StirlingS1[n, m], {n, 0, 9}, {m, 0, n}] (* Peter Luschny, Dec 30 2010 *)
  • Maxima
    create_list(stirling1(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    a(n,k) = if(k<0 || k>n,0, if(n==0,1,(n-1)*a(n-1,k)+a(n-1,k-1)))
    
  • PARI
    trg(nn)=for (n=0, nn-1, for (k=0, n, print1(stirling(n,k,1), ", ");); print();); \\ Michel Marcus, Jan 19 2015
    

Formula

s(n, k) = A008275(n,k) for n >= 1, k = 1..n; column k = 0 is {1, repeat(0)}.
s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1.
The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k)=a(n-1, k-1)+(n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1.
Triangle (signed) = [0, -1, -1, -2, -2, -3, -3, -4, -4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; Triangle(unsigned) = [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.
Sum_{k=0..n} (-m)^(n-k)*s(n, k) = A000142(n), A001147(n), A007559(n), A007696(n), ... for m = 1, 2, 3, 4, ... .- Philippe Deléham, Oct 29 2005
A008275*A007318 as infinite lower triangular matrices. - Gerald McGarvey, Aug 20 2009
T(n,k) = n!*[x^k]([t^n]exp(x*log(1+t))). - Peter Luschny, Dec 30 2010, updated Jun 07 2020
From Wolfdieter Lang, Nov 14 2018: (Start)
Recurrence from the Sheffer a-sequence (see a comment above): s(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*Bernoulli(j)*s(n-1, k-1+j), for n >= 1 and k >= 1, with s(n, 0) = 0 if n >= 1, and s(0,0) = 1.
Boas-Buck type recurrence for column k: s(n, k) = (n!*k/(n - k))*Sum_{j=k..n-1} b(n-1-j)*s(j, k)/j!, for n >= 1 and k = 0..n-1, with input s(n, n) = 1. For sequence b see the Boas-Buck comment above. (End)
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*A271705(n,j)*A216294(j,k). - Mélika Tebni, Feb 23 2023

Extensions

Offset corrected by R. J. Mathar, Feb 23 2009
Formula corrected by Philippe Deléham, Sep 10 2009

A059110 Triangle T = A007318*A271703; T(n,m)= Sum_{i=0..n} L'(n,i)*binomial(i,m), m=0..n.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 13, 21, 9, 1, 73, 136, 78, 16, 1, 501, 1045, 730, 210, 25, 1, 4051, 9276, 7515, 2720, 465, 36, 1, 37633, 93289, 85071, 36575, 8015, 903, 49, 1, 394353, 1047376, 1053724, 519456, 137270, 20048, 1596, 64, 1, 4596553, 12975561
Offset: 0

Views

Author

Vladeta Jovovic, Jan 04 2001

Keywords

Comments

L'(n,i) are unsigned Lah numbers (cf. A008297): L'(n,i)=n!/i!*binomial(n-1,i-1) for i >= 1, L'(0,0)=1, L'(n,0)=0 for n>0. T(n,0)=A000262(n); T(n,2)=A052852(n). Row sums A052897.
Exponential Riordan array [e^(x/(1-x)),x/(1-x)]. - Paul Barry, Apr 28 2007
From Wolfdieter Lang, Jun 22 2017: (Start)
The inverse matrix T^(-1) is exponential Riordan (aka Sheffer) (e^(-x), x/(1+x)): T^(-1)(n, m) = (-1)^(n-m)*A271705(n, m).
The a- and z-sequences of this Sheffer (aka exponential Riordan) matrix are a = [1,1,repeat(0)] and z(n) = (-1)^(n+1)*A028310(n)/A000027(n-1) with e.g.f. ((1+x)/x)*(1-exp(-x)). For a- and z-sequences see a W. Lang link under A006232 with references. (End)

Examples

			The triangle T = A007318*A271703 starts:
n\m       0        1        2       3       4      5     6    7  8 9 ...
0:        1
1:        1        1
2:        3        4        1
3:       13       21        9       1
4:       73      136       78      16       1
5:      501     1045      730     210      25      1
6:     4051     9276     7515    2720     465     36     1
7:    37633    93289    85071   36575    8015    903    49    1
8:   394353  1047376  1053724  519456  137270  20048  1596   64  1
9:  4596553 12975561 14196708 7836276 2404206 427518 44436 2628 81 1
... reformatted. - _Wolfdieter Lang_, Jun 22 2017
E.g.f. for T(n, 2) = 1/2!*(x/(1-x))^2*e^(x/(x-1)) = 1*x^2/2 + 9*x^3/3! + 78*x^4/4! + 730*x^5/5! + 7515*x^6/6 + ...
From _Wolfdieter Lang_, Jun 22 2017: (Start)
The z-sequence starts: [1, 1/2, -2/3, 3/4, -4/5, 5/6, -6/7, 7/8, -8/9, ...
T recurrence: T(3, 0) = 3*(1*T(2,0) + (1/2)*T(2, 1) + (-2/3)*T(2 ,1)) = 3*(3 + (1/2)*4 - (2/3)) = 13; T(3, 1) = 3*(T(2, 0)/1 + T(2, 1)) = 3*(3 + 4) = 21.
Meixner type recurrence for R(2, x): (D - D^2)*(3 + 4*x + x^2) = 4 + 2*x - 2 = 2*(1 + x), (D = d/dx).
General Sheffer recurrence for R(2, x): (1+x)*(1 + 2*D + D^2)*(1 + x) = (1+x)*(1 + x + 2) = 3 + 4*x + x^2. (End)
		

Crossrefs

Programs

  • GAP
    Concatenation([1],Flat(List([1..10],n->List([0..n],m->Sum([0..n],i-> Factorial(n)/Factorial(i)*Binomial(n-1,i-1)*Binomial(i,m)))))); # Muniru A Asiru, Jul 25 2018
    
  • Magma
    A059110:= func< n,k | n eq 0 select 1 else Factorial(n-1)*Binomial(n,k)*Evaluate(LaguerrePolynomial(n-1, 1-k), -1) >;
    [A059110(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 23 2021
  • Maple
    Lprime := proc(n,i)
        if n = 0 and i = 0 then
            1;
        elif k = 0 then
            0 ;
        else
            n!/i!*binomial(n-1,i-1) ;
        end if;
    end proc:
    A059110 := proc(n,k)
        add(Lprime(n,i)*binomial(i,k),i=0..n) ;
    end proc: # R. J. Mathar, Mar 15 2013
  • Mathematica
    (* First program *)
    lp[n_, i_] := Binomial[n-1, i-1]*n!/i!; lp[0, 0] = 1; t[n_, m_] := Sum[lp[n, i]*Binomial[i, m], {i, 0, n}]; Table[t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Mar 26 2013 *)
    (* Second program *)
    A059110[n_, k_]:= If[n==0, 1, (n-1)!*Binomial[n, k]*LaguerreL[n-1, 1-k, -1]];
    Table[A059110[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 23 2021 *)
  • Sage
    def A059110(n, k): return 1 if n==0 else factorial(n-1)*binomial(n, k)*gen_laguerre(n-1, 1-k, -1)
    flatten([[A059110(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 23 2021
    

Formula

E.g.f. for column m: (1/m!)*(x/(1-x))^m*e^(x/(x-1)), m >= 0.
From Wolfdieter Lang, Jun 22 2017: (Start)
E.g.f. for row polynomials in powers of x (e.g.f. of the triangle): exp(z/(1-z))* exp(x*z/(1-z)) (exponential Riordan).
Recurrence: T(n, 0) = Sum_{j=0} z(j)*T(n-1, j), n >= 1, with z(n) = (-1)^(n+1)*A028310(n), T(0, 0) = 1, T(n, m) = 0 n < m, T(n, m) = n*(T(n-1, m-1)/m + T(n-1, m)), n >= m >= 1 (from the z- and a-sequence, see a comment above).
Meixner type recurrence for the (monic) row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m: Sum_{k=0..n-1} (-1)^k*D^(k+1)*R(n, x) = n*R(n-1, x), n >=1, R(0, x) = 1, with D = d/dx.
General Sheffer recurrence: R(n, x) = (x+1)*(1+D)^2*R(n-1, x), n >=1, R(0, x) = 1.
(End)
P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of this entry; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - Tom Copeland, Jul 18 2018
From G. C. Greubel, Feb 23 2021: (Start)
T(n, k) = (n-1)!*binomial(n, k)*LaguerreL(n-1, 1-k, -1) with T(0, 0) = 1.
Sum_{k=0..n} T(n, k) = A052897(n). (End)

A308876 Expansion of e.g.f. exp(x)*(1 - x)/(1 - 2*x).

Original entry on oeis.org

1, 2, 7, 40, 317, 3166, 37987, 531812, 8508985, 153161722, 3063234431, 67391157472, 1617387779317, 42052082262230, 1177458303342427, 35323749100272796, 1130359971208729457, 38432239021096801522, 1383560604759484854775, 52575302980860424481432
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Comments

Binomial transform of A002866.

Crossrefs

Programs

  • Maple
    a:= n-> n! * add(ceil(2^(n-k-1))/k!, k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 12 2019
  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[x] (1 - x)/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!
    Table[1 + Sum[Binomial[n,k] 2^(k - 1) k!, {k, 1, n}], {n, 0, 19}]

Formula

a(n) = 1 + Sum_{k=1..n} binomial(n,k) * 2^(k-1) * k!.
a(n) = A010844(n) - A067273(n).
a(n) ~ n! * 2^(n-1) * exp(1/2). - Vaclav Kotesovec, Jun 29 2019
a(n) = Sum_{k=0..n} k! * A271705(n,k). - Alois P. Heinz, Sep 12 2019

A326659 T(n,k) = [0=0]; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 15, 18, 6, 1, 64, 132, 96, 24, 1, 325, 980, 1140, 600, 120, 1, 1956, 7830, 12720, 10440, 4320, 720, 1, 13699, 68502, 143850, 162120, 103320, 35280, 5040, 1, 109600, 657608, 1698816, 2447760, 2123520, 1108800, 322560, 40320
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2019

Keywords

Comments

[] is an Iverson bracket.

Examples

			Triangle T(n,k) begins:
  1;
  1,     1;
  1,     4,     2;
  1,    15,    18,      6;
  1,    64,   132,     96,     24;
  1,   325,   980,   1140,    600,    120;
  1,  1956,  7830,  12720,  10440,   4320,   720;
  1, 13699, 68502, 143850, 162120, 103320, 35280, 5040;
  ...
		

Crossrefs

Columns k=0-2 give: A000012, A007526, 2*A134432(n-1).
Main diagonal gives A000142.
Row sums give A308876.

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(0=0, 1, 0)
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    T[n_ /; n >= 0, k_ /; k >= 0] := T[n, k] = Boole[0 < k <= n]*n*(T[n-1, k-1] + T[n-1, k]) + Boole[k == 0 && n >= 0];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)

Formula

E.g.f. of column k: exp(x)*(x/(1-x))^k.
T(n,k) = k! * A271705(n,k).
T(n,k) = n * A073474(n-1,k-1) for n,k >= 1.
T(n,1) = n * A000522(n-1) for n >= 1.
T(n,2) = n * A093964(n-1) for n >= 1.
Sum_{k=1..n} k * T(n,k) = A327606(n).

A134432 Sum of entries in all the arrangements of the set {1,2,...,n} (to n=0 there corresponds the empty set).

Original entry on oeis.org

0, 1, 9, 66, 490, 3915, 34251, 328804, 3452436, 39456405, 488273005, 6510306726, 93097386174, 1421850988831, 23105078568495, 398118276872520, 7251440043035176, 139227648826275369, 2810658160680434001, 59519819873232720010, 1319356007189991960210
Offset: 0

Views

Author

Emeric Deutsch, Nov 16 2007

Keywords

Comments

Appears to be the binomial transform of A001286 (filled with the appropriate two leading zeros), shifted one index left. - R. J. Mathar, Apr 04 2012

Examples

			a(2)=9 because the arrangements of {1,2} are (empty), 1, 2, 12 and 21.
		

Crossrefs

Programs

  • Magma
    [Binomial(n+1,2)*(&+[Factorial(j)*Binomial(n-1, j-1): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 09 2022
    
  • Maple
    Q[0]:=1: for n to 17 do Q[n]:=sort(simplify(Q[n-1]+t^n*x*(diff(x*Q[n-1], x))), t) end do: for n from 0 to 17 do P[n]:=sort(subs(x=1,Q[n])) end do: seq(subs(t =1,diff(P[n],t)),n=0..17);
    # second Maple program:
    b:= proc(n, t) option remember; `if`(n=0, [t!, 0],
          b(n-1, t)+(p-> p+[0, n*p[1]])(b(n-1, t+1)))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 19 2020
  • Mathematica
    (* First program *)
    b[n_, s_, t_]:= b[n, s, t] = If[n==0, t! x^s, b[n-1, s, t] + b[n-1, s+n, t+1]];
    T[n_]:= T[n]= Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]] @ b[n, 0, 0];
    a[n_] := Sum[k T[n][[k+1]], {k, 0, n(n+1)/2}];
    a /@ Range[0, 20] (* Jean-François Alcover, Feb 19 2020, after Alois P. Heinz *)
    (* Second program *)
    a[n_]:= ((n+1)/2)*Sum[j*j!*Binomial[n,j], {j,0,n}];
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 09 2022 *)
  • Sage
    [((n+1)/2)*sum( j*factorial(j)*binomial(n, j) for j in (0..n) ) for n in (0..30)] # G. C. Greubel, Jan 09 2022

Formula

a(n) = Sum_{k=0..n*(n+1)/2} k*A134431(n,k).
a(n) = (d/dt)P[n](t) evaluated at t=1; here P[n](t)=Q[n](t,1) where the polynomials Q[n](t,x) are defined by Q[0]=1 and Q[n]=Q[n-1] + xt^n (d/dx)xQ[n-1]. (Q[n](t,x) is the bivariate generating polynomial of the arrangements of {1,2,...,n}, where t (x) marks the sum (number) of the entries; for example, Q[2](t,x) = 1 + tx + t^2*x + 2t^3*x^2, corresponding to: empty, 1, 2, 12 and 21, respectively.)
E.g.f.: exp(x)*x*(2 + x - x^2) / (2*(1 - x)^3). - Ilya Gutkovskiy, Jun 02 2020
From G. C. Greubel, Jan 09 2022: (Start)
a(n) = A271705(n+1, 2).
a(n) = ((n+1)/2) * Sum_{j=0..n} j * j! * binomial(n, j).
a(n) = (1/n!)*binomial(n+1, 2) * Sum_{j=0..n} (j!)^2 * A271703(n, j). (End)
D-finite with recurrence (-n+1)*a(n) +(n+1)^2*a(n-1) -n*(n+1)*a(n-2)=0. - R. J. Mathar, Jul 26 2022

Extensions

More terms from Alois P. Heinz, Dec 22 2017

A271704 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*L(j,k), L the unsigned Lah numbers A271703, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 11, 8, 1, 0, 49, 57, 15, 1, 0, 261, 424, 174, 24, 1, 0, 1631, 3425, 1930, 410, 35, 1, 0, 11743, 30336, 21855, 6320, 825, 48, 1, 0, 95901, 294553, 259161, 95235, 16835, 1491, 63, 1, 0, 876809, 3123632, 3251500, 1452976, 325150, 38864, 2492, 80, 1
Offset: 0

Views

Author

Peter Luschny, Apr 14 2016

Keywords

Examples

			Triangle starts:
  [1]
  [0, 1]
  [0, 3,     1]
  [0, 11,    8,     1]
  [0, 49,    57,    15,    1]
  [0, 261,   424,   174,   24,   1]
  [0, 1631,  3425,  1930,  410,  35,  1]
  [0, 11743, 30336, 21855, 6320, 825, 48, 1]
		

Crossrefs

A001339 (col. 1), A005563 (diag. n,n-1).

Programs

  • Maple
    L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*binomial(n,n-k)*binomial(n-1,n-k)):
    T := (n,k) -> add(L(j,k)*binomial(-j,-n)*(-1)^(n-j), j=0..n):
    seq(seq(T(n,k), k=0..n), n=0..9);

Formula

From Natalia L. Skirrow, Jun 12 2025: (Start)
Definition can also be written Sum_{j=0..n} C(n-1, j-1)*L(j, k), where C(n, -1) = (1 if n = -1 else 0) over integer n.
T(n, k) = C(n-1, k-1)*A143409(n-k, k) = k*(k+1)*A271705(n+1, k+1)/(n*(n+1)) for n > 0.
E.g.f. for sequence b(n, k) = T(n+1, k+1): F/(1-x)^2, where F = exp(x + y*x/(1-x)) is e.g.f. of A271705.
E.g.f. for kth column of b: exp(x)*x^(k-1)/(1-x)^(k+1)/(k-1)!. (These cannot be integrated with x to give e.g.f.s for T(n, k) using standard functions.)
T(n, k) = Sum_{i=0..n-k} (n-1)_i*(i+1)*A271705(n-1-i, k-1), where (n)_i = n!/(n-i)! is the falling factorial. (End)

A271706 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(-j-1, -n-1)*L(j, k), L the unsigned Lah numbers A271703, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, 1, 0, 1, -1, 3, 3, 1, 1, 8, 18, 8, 1, -1, 45, 110, 70, 15, 1, 1, 264, 795, 640, 195, 24, 1, -1, 1855, 6489, 6335, 2485, 441, 35, 1, 1, 14832, 59332, 67984, 32550, 7504, 868, 48, 1, -1, 133497, 600732, 789852, 445914, 126126, 19068, 1548, 63, 1
Offset: 0

Views

Author

Peter Luschny, Apr 20 2016

Keywords

Examples

			Triangle starts:
  [ 1]
  [-1,    1]
  [ 1,    0,    1]
  [-1,    3,    3,    1]
  [ 1,    8,   18,    8,    1]
  [-1,   45,  110,   70,   15,   1]
  [ 1,  264,  795,  640,  195,  24,  1]
  [-1, 1855, 6489, 6335, 2485, 441, 35, 1]
		

Crossrefs

A052845 (row sums), A000240 (col. 1), A000274 (col. 2), A067998 (diag n,n-1).

Programs

  • Maple
    L := (n, k) -> `if`(k<0 or k>n, 0, (n-k)!*binomial(n, n-k)*binomial(n-1, n-k)):
    T := (n, k) -> add(L(j, k)*binomial(-j-1,-n-1), j=0..n):
    seq(seq(T(n, k), k=0..n), n=0..9);
    # Or:
    T := (n, k) -> (-1)^(n-k)*binomial(n, k)*hypergeom([k-n, k], [], 1):
    for n from 0 to 8 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Jun 25 2025

Formula

T(n, k) = (-1)^(k-n)*binomial(n, k)*hypergeom([k-n, k], [], 1). (After a formula of Natalia L. Skirrow in A271705.) - Peter Luschny, Jun 25 2025
Showing 1-7 of 7 results.