cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A326659 T(n,k) = [0=0]; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 15, 18, 6, 1, 64, 132, 96, 24, 1, 325, 980, 1140, 600, 120, 1, 1956, 7830, 12720, 10440, 4320, 720, 1, 13699, 68502, 143850, 162120, 103320, 35280, 5040, 1, 109600, 657608, 1698816, 2447760, 2123520, 1108800, 322560, 40320
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2019

Keywords

Comments

[] is an Iverson bracket.

Examples

			Triangle T(n,k) begins:
  1;
  1,     1;
  1,     4,     2;
  1,    15,    18,      6;
  1,    64,   132,     96,     24;
  1,   325,   980,   1140,    600,    120;
  1,  1956,  7830,  12720,  10440,   4320,   720;
  1, 13699, 68502, 143850, 162120, 103320, 35280, 5040;
  ...
		

Crossrefs

Columns k=0-2 give: A000012, A007526, 2*A134432(n-1).
Main diagonal gives A000142.
Row sums give A308876.

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(0=0, 1, 0)
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    T[n_ /; n >= 0, k_ /; k >= 0] := T[n, k] = Boole[0 < k <= n]*n*(T[n-1, k-1] + T[n-1, k]) + Boole[k == 0 && n >= 0];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)

Formula

E.g.f. of column k: exp(x)*(x/(1-x))^k.
T(n,k) = k! * A271705(n,k).
T(n,k) = n * A073474(n-1,k-1) for n,k >= 1.
T(n,1) = n * A000522(n-1) for n >= 1.
T(n,2) = n * A093964(n-1) for n >= 1.
Sum_{k=1..n} k * T(n,k) = A327606(n).

A327606 Expansion of e.g.f. exp(x)*(1-x)*x/(1-2*x)^2.

Original entry on oeis.org

0, 1, 8, 69, 712, 8705, 123456, 1994293, 36163184, 727518177, 16081980760, 387499155461, 10108673620728, 283851555270049, 8536572699232592, 273759055527114165, 9325469762472018016, 336282091434597013313, 12797935594025234906664, 512609204063389138693957
Offset: 0

Views

Author

Alois P. Heinz, Sep 18 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!*coeff(series(exp(x)*(1-x)*x/(1-2*x)^2, x, n+1), x, n):
    seq(a(n), n=0..23);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, n^3,
          2*(n+2)*a(n-1)-(4*n-1)*a(n-2)+2*(n-2)*a(n-3))
        end:
    seq(a(n), n=0..23);
  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x](1-x)(x/(1-2x)^2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 15 2020 *)

Formula

E.g.f: exp(x)*(1-x)*x/(1-2*x)^2.
a(n) = Sum_{k=1..n} k * A326659(n,k).
a(n) ~ n! * exp(1/2) * n * 2^(n-2). - Vaclav Kotesovec, Sep 19 2019

A386374 Number of words of length n over an infinite alphabet such that the letters cover an initial interval and the letter 1 occurs at least as many times as any other letter.

Original entry on oeis.org

1, 1, 3, 10, 47, 276, 2022, 17606, 179391, 2093860, 27581888, 404680398, 6541528886, 115437202986, 2206844818622, 45408726154590, 1000134868827263, 23468606700087972, 584340284516996400, 15383829737201853518, 426915367401366308112, 12454073547413511363878
Offset: 0

Views

Author

John Tyler Rascoe, Jul 19 2025

Keywords

Examples

			a(3) = 10 counts: (1,1,1), (1,1,2), (1,2,1), (1,2,3), (1,3,2), (2,1,1), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1,
          add(b(n-j, t)/j!, j=1..min(n, t)))
        end:
    a:= n-> n!*add(b(n-j, j)/j!, j=0..n):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jul 19 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(serlaplace(sum(i=0,N, x^i/(i! *(1-sum(j=1,i, x^j/j!))))))}

Formula

E.g.f.: Sum_{i>=0} x^i/(i! * (1 - Sum_{j=1..i} x^j/j!)).

A386375 Number of words of length n over an infinite alphabet such that the letters cover an initial interval and the letter 1 occurs more frequently than any other letter.

Original entry on oeis.org

1, 1, 1, 4, 17, 96, 652, 5356, 51361, 568840, 7157036, 101048454, 1582644956, 27224336244, 509883010652, 10319902635984, 224283040843745, 5205554049801528, 128430045368430484, 3354764715348964222, 92460461868234201532, 2680680433302859375630, 81542551486359310209666
Offset: 0

Views

Author

John Tyler Rascoe, Jul 19 2025

Keywords

Examples

			a(5) = 96 counts the following words (number of permutations shown in brackets): (1,1,1,1,1) [1], (1,1,1,1,2) [5], (1,1,1,2,2) [10], (1,1,1,2,3) [20], (1,1,2,3,4) [60].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1,
          add(b(n-j, t)/j!, j=1..min(n, t)))
        end:
    a:= n-> n!*add(b(n-j, j-1)/j!, j=0..n):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jul 19 2025
  • PARI
    B_x(N) = {my(x='x+O('x^N)); Vec(serlaplace( sum(i=0,N, x^i/(i!*(1-sum(j=1,i-1, x^j/j!))))))}

Formula

E.g.f.: Sum_{i>=0} x^i/(i! * (1 - Sum_{j=1..i-1} x^j/j!)).
Showing 1-4 of 4 results.