cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A271705 Triangle read by rows, T(n,k) = Sum_{j=0..n} C(n,j)*L(j,k), L the unsigned Lah numbers A271703, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 15, 9, 1, 1, 64, 66, 16, 1, 1, 325, 490, 190, 25, 1, 1, 1956, 3915, 2120, 435, 36, 1, 1, 13699, 34251, 23975, 6755, 861, 49, 1, 1, 109600, 328804, 283136, 101990, 17696, 1540, 64, 1, 1, 986409, 3452436, 3534636, 1554966, 342846, 40404, 2556, 81, 1
Offset: 0

Views

Author

Peter Luschny, Apr 14 2016

Keywords

Comments

This is the Sheffer (aka exponential Riordan) matrix T = P*L = A007318*A271703 = (exp(x), x/(1-x)). Note that P = A007318 is Sheffer (exp(t), t) (of the Appell type). The Sheffer a-sequence is [1,1,repeat(0)] and the z-sequence has e.g.f. (x/(1+x))*(1 - exp(-x/(1+x)) given in A288869 / A000027. Because the column k=0 has only entries 1, the z-sequence gives fractional representations of 1. See A288869. - Wolfdieter Lang, Jun 20 2017

Examples

			Triangle starts:
  1;
  1,    1;
  1,    4,    1;
  1,   15,    9,    1;
  1,   64,   66,   16,   1;
  1,  325,  490,  190,  25,  1;
  1, 1956, 3915, 2120, 435, 36, 1;
  ...
Recurrence: T(3, 2) = (3/2)*4 + 3*1 = 9. - _Wolfdieter Lang_, Jun 20 2017
		

Crossrefs

Cf. A000290 (diag n, n-1), A062392 (diag n, n-2).
Cf. A007526 (col. 1), A134432 (col. 2).
Cf. A052844 (row sums), A059110 (matrix inverse).

Programs

  • Magma
    B:=Binomial;
    A271705:= func< n,k | k eq 0 select 1 else (&+[B(n, j+k)*B(j+k, k)*B(j+k-1, k-1)*Factorial(j): j in [0..n-k]]) >;
    [A271705(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 09 2022
    
  • Maple
    L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*binomial(n,n-k)*binomial(n-1,n-k)):
    T := (n,k) -> add(L(j,k)*binomial(-j-1,-n-1)*(-1)^(n-j), j=0..n):
    seq(seq(T(n,k), k=0..n), n=0..9);
  • Mathematica
    T[n_, k_]:= If[k==0, 1, Sum[((k*j!)/(j+k))*Binomial[n, j+k]*Binomial[j+k, k]^2, {j,0,n-k}]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 09 2022 *)
  • Sage
    b=binomial
    def A271705(n,k): return 1 if (k==0) else sum(factorial(j-k)*b(n, j)*b(j, k)*b(j-1, k-1) for j in (k..n))
    flatten([[A271705(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 09 2022

Formula

From Wolfdieter Lang, Jun 20 2017: (Start)
T(n, k) = Sum_{m=k..n} A007318(n, m)*A271703(m, k), n >= k >= 0, and 0 for k < m. See also the name.
E.g.f. of column k: exp(x)*(x/(1-x))^k/k! (Sheffer property), k >= 0.
E.g.f. of triangle (or row polynomials in x): exp(z)*exp(x*z/(1-z)).
Recurrence for T(n, k), k >= 1, with T(n, 0) = 1, T(n, k) = 0 if n < k: T(n, k) = (n/k)*T(n-1, k-1) + n*T(n-1, k), n >= 1, k = 1..n. (From the a-sequence with column k=0 as input.) (End)
T(n, k) = Sum_{j=0..n-k} j!*binomial(n, j+k)*binomial(j+k, k)*binomial(j+k-1, k-1) with T(n, 0) = 1. - G. C. Greubel, Jan 09 2022
From Natalia L. Skirrow, Jun 11 2025: (Start)
T(n, k) = C(n, k)*hypergeom([k-n, k], [], -1), which equals C(n, k)*A143409(n-k, k-1) for k>0.
By the saddle point method upon the e.g.f., n-th row polynomial converges with n (for all y) to n^n*exp(2*sqrt(n*y) - n - y/2 + 1)/sqrt(2*sqrt(n/y)); as such, the n-th row's expectation is ~ sqrt(n)-1/4 and the n-th row's variance is ~ (sqrt(n)-1)/2. (End)

A326659 T(n,k) = [0=0]; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 15, 18, 6, 1, 64, 132, 96, 24, 1, 325, 980, 1140, 600, 120, 1, 1956, 7830, 12720, 10440, 4320, 720, 1, 13699, 68502, 143850, 162120, 103320, 35280, 5040, 1, 109600, 657608, 1698816, 2447760, 2123520, 1108800, 322560, 40320
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2019

Keywords

Comments

[] is an Iverson bracket.

Examples

			Triangle T(n,k) begins:
  1;
  1,     1;
  1,     4,     2;
  1,    15,    18,      6;
  1,    64,   132,     96,     24;
  1,   325,   980,   1140,    600,    120;
  1,  1956,  7830,  12720,  10440,   4320,   720;
  1, 13699, 68502, 143850, 162120, 103320, 35280, 5040;
  ...
		

Crossrefs

Columns k=0-2 give: A000012, A007526, 2*A134432(n-1).
Main diagonal gives A000142.
Row sums give A308876.

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(0=0, 1, 0)
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    T[n_ /; n >= 0, k_ /; k >= 0] := T[n, k] = Boole[0 < k <= n]*n*(T[n-1, k-1] + T[n-1, k]) + Boole[k == 0 && n >= 0];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)

Formula

E.g.f. of column k: exp(x)*(x/(1-x))^k.
T(n,k) = k! * A271705(n,k).
T(n,k) = n * A073474(n-1,k-1) for n,k >= 1.
T(n,1) = n * A000522(n-1) for n >= 1.
T(n,2) = n * A093964(n-1) for n >= 1.
Sum_{k=1..n} k * T(n,k) = A327606(n).

A134431 Triangle read by rows: T(n,k) is the number of arrangements of the set {1,2,...,n} in which the sum of the entries is equal to k (n >= 0, k >= 0; to n=0 there corresponds the empty set).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 6, 1, 1, 1, 3, 3, 4, 8, 8, 6, 6, 24, 1, 1, 1, 3, 3, 5, 10, 10, 14, 14, 36, 30, 30, 24, 24, 120, 1, 1, 1, 3, 3, 5, 11, 12, 16, 22, 44, 44, 66, 60, 78, 174, 168, 144, 144, 120, 120, 720, 1, 1, 1, 3, 3, 5, 11, 13, 18, 24, 52, 52, 80, 98, 120, 234
Offset: 0

Views

Author

Emeric Deutsch, Nov 16 2007

Keywords

Comments

Row n has 1 + n(n+1)/2 terms (n >= 0). Row sums yield the arrangement numbers (A000522). T(n, n(n+1)/2) = n!. Sum_{k=0..n(n+1)/2} k*T(n,k) = A134432(n).

Examples

			T(4,7)=8 because we have 34,43 and the six permutations of {1,2,4}.
Triangle starts:
  1;
  1, 1;
  1, 1, 1, 2;
  1, 1, 1, 3, 2, 2, 6;
  1, 1, 1, 3, 3, 4, 8, 8, 6, 6, 24;
		

Crossrefs

Programs

  • Maple
    Q[0]:=1: for n to 7 do Q[n]:=sort(simplify(Q[n-1]+t^n*x*(diff(x*Q[n-1],x))), t) end do: for n from 0 to 7 do P[n]:=sort(subs(x=1,Q[n])) end do: for n from 0 to 7 do seq(coeff(P[n],t,j),j=0..(1/2)*n*(n+1)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, s, t) option remember;
          `if`(n=0, t!*x^s, b(n-1, s, t)+b(n-1, s+n, t+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Dec 22 2017
  • Mathematica
    b[n_, s_, t_] := b[n, s, t] = If[n == 0, t!*x^s, b[n - 1, s, t] + b[n - 1, s + n, t + 1]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]] @ b[n, 0, 0];
    T /@ Range[0, 8] // Flatten (* Jean-François Alcover, Feb 19 2020, after Alois P. Heinz *)

Formula

The row generating polynomials P[n](t) are equal to Q[n](t,1), where the polynomials Q[n](t,x) are defined by Q[0]=1 and Q[n]=Q[n-1] + xt^n (d/dx)xQ[n-1]. [Q[n](t,x) is the bivariate generating polynomial of the arrangements of {1,2,...,n}, where t (x) marks the sum (number) of the entries; for example, Q[2](t,x)=1+tx + t^2*x + 2t^3*x^2, corresponding to: empty, 1, 2, 12 and 21, respectively.]
Showing 1-3 of 3 results.