A271727 Decimal expansion of the density of exponentially 2^n-numbers (A138302).
8, 7, 2, 4, 9, 7, 1, 7, 9, 3, 5, 3, 9, 1, 2, 8, 1, 3, 5, 5, 8, 0, 0, 7, 7, 1, 4, 3, 3, 2, 5, 3, 1, 8, 6, 6, 9, 1, 9, 5, 8, 3, 9, 3, 9, 7, 7, 7, 3, 3, 3, 7, 3, 7, 6, 5, 4, 1, 2, 4, 2, 2, 6, 2, 1, 3, 1, 1, 2, 7, 8, 3, 5, 9, 0, 3, 9, 8, 1, 4, 2, 9, 7, 9, 2, 2, 1, 7, 8, 4, 4, 1, 6, 5, 9, 9, 1, 5
Offset: 0
Examples
0.87249717935391281355800771433253186691958393977733373765412...
Links
- Juan Arias-de-Reyna, Table of n, a(n) for n = 0..1000
- Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015-2016.
- Vladimir Shevelev, A fast computation of density of exponentially S-numbers, arXiv:1602.04244 [math.NT], 2016.
Programs
-
Mathematica
$MaxExtraPrecision = m = 500; em = 10; f[x_] := Log[1 - x^3 + Sum[x^(2^e) - x^(1 + 2^e), {e, 2, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]] (* Amiram Eldar, Sep 09 2022 *)
Formula
Equals Product_{prime p} f(1/p), where f(x) = 1-x^3+Sum_{n>=2}(x^(2^n)-x^(1+2^n)).