cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271727 Decimal expansion of the density of exponentially 2^n-numbers (A138302).

Original entry on oeis.org

8, 7, 2, 4, 9, 7, 1, 7, 9, 3, 5, 3, 9, 1, 2, 8, 1, 3, 5, 5, 8, 0, 0, 7, 7, 1, 4, 3, 3, 2, 5, 3, 1, 8, 6, 6, 9, 1, 9, 5, 8, 3, 9, 3, 9, 7, 7, 7, 3, 3, 3, 7, 3, 7, 6, 5, 4, 1, 2, 4, 2, 2, 6, 2, 1, 3, 1, 1, 2, 7, 8, 3, 5, 9, 0, 3, 9, 8, 1, 4, 2, 9, 7, 9, 2, 2, 1, 7, 8, 4, 4, 1, 6, 5, 9, 9, 1, 5
Offset: 0

Views

Author

Juan Arias-de-Reyna, Apr 13 2016

Keywords

Examples

			0.87249717935391281355800771433253186691958393977733373765412...
		

Crossrefs

Density of A138302.
Cf. A271726 (Expansion of log(f(x))).

Programs

  • Mathematica
    $MaxExtraPrecision = m = 500; em = 10; f[x_] := Log[1 - x^3 + Sum[x^(2^e) - x^(1 + 2^e), {e, 2, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]] (* Amiram Eldar, Sep 09 2022 *)

Formula

Equals Product_{prime p} f(1/p), where f(x) = 1-x^3+Sum_{n>=2}(x^(2^n)-x^(1+2^n)).