A271731 Number of set partitions of [n] with maximal block length multiplicity equal to two.
1, 0, 9, 25, 70, 406, 2093, 10935, 41961, 267751, 1745040, 9744384, 60271016, 369277000, 2981920373, 19297914599, 136978951579, 1039245386419, 8924928983999, 65392069094065, 539711448752906, 4489189106832134, 39604974257078180, 404561197077466250
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..648
- Wikipedia, Partition of a set
Crossrefs
Column k=2 of A271423.
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i)))) end: a:= n-> b(n$2, 2)-b(n$2, 1): seq(a(n), n=2..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]]; a[n_] := b[n, n, 2] - b[n, n, 1]; Table[a[n], {n, 2, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
Comments