A271733 Number of set partitions of [n] with maximal block length multiplicity equal to four.
1, 0, 15, 35, 385, 2331, 13335, 88110, 629200, 4811235, 35992957, 276332420, 2325570065, 20036259075, 171879027000, 1583318184855, 14476456463826, 139849724906591, 1347082690705367, 13909222770509990, 144001190692525628, 1519193757875044900
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..612
- Wikipedia, Partition of a set
Crossrefs
Column k=4 of A271423.
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i)))) end: a:= n-> b(n$2, 4)-b(n$2, 3): seq(a(n), n=4..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]]; a[n_] := b[n, n, 4] - b[n, n, 3]; Table[a[n], {n, 4, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
Comments