A271735 Number of set partitions of [n] with maximal block length multiplicity equal to six.
1, 0, 28, 84, 840, 5082, 48279, 413127, 3093090, 26601575, 255431176, 2309491548, 20998179748, 209051155600, 2137087555220, 21652990622410, 230200208290745, 2517313465793819, 28104615964752327, 320432370881428575, 3760667223506993800, 45094960570293757695
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..597
- Wikipedia, Partition of a set
Crossrefs
Column k=6 of A271423.
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i)))) end: a:= n-> b(n$2, 6)-b(n$2, 5): seq(a(n), n=6..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]]; a[n_] := b[n, n, 6] - b[n, n, 5]; Table[a[n], {n, 6, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
Comments