A271736 Number of set partitions of [n] with maximal block length multiplicity equal to seven.
1, 0, 36, 120, 1320, 8712, 70356, 691119, 6628050, 55398200, 528441056, 5607882072, 55953959256, 559256993400, 6033783063160, 66852986570260, 743874599106485, 8455383000184208, 100088596628849400, 1202568046655647100, 14764362076427728050
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..592
- Wikipedia, Partition of a set
Crossrefs
Column k=7 of A271423.
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i)))) end: a:= n-> b(n$2, 7)-b(n$2, 6): seq(a(n), n=7..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]]; a[n_] := b[n, n, 7] - b[n, n, 6]; Table[a[n], {n, 7, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
Comments