A271738 Number of set partitions of [n] with maximal block length multiplicity equal to nine.
1, 0, 55, 220, 2860, 22022, 205205, 1853280, 17381650, 200982925, 2291851991, 23049864630, 262234646310, 3319690300850, 39333605649855, 464026283957060, 5880153732068000, 75836425964702975, 973764622911909400, 12796285021434965050, 173456578124336807300
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..586
- Wikipedia, Partition of a set
Crossrefs
Column k=9 of A271423.
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i)))) end: a:= n-> b(n$2, 9)-b(n$2, 8): seq(a(n), n=9..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]]; a[n_] := b[n, n, 9] - b[n, n, 8]; Table[a[n], {n, 9, 30}] (* Jean-François Alcover, May 08 2018, after Alois P. Heinz *)
Comments