A271749 Number of set partitions of [n] such that 10 is the largest element of the last block.
42294, 168509, 724731, 3321545, 16075611, 81602489, 432156891, 2377526345, 13540170651, 79588371929, 481614364251, 2993757491945, 19079196017691, 124446430190969, 829494189346011, 5642172217982345, 39113680447384731, 276028057609763609, 1980851149371918171
Offset: 10
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..1000
- Wikipedia, Partition of a set
- Index entries for linear recurrences with constant coefficients, signature (45,-870,9450,-63273,269325,-723680,1172700,-1026576,362880).
Crossrefs
Column k=10 of A271466.
Programs
-
PARI
Vec(x^10*(42294 - 1734721*x + 29937606*x^2 - 282366820*x^3 + 1580780268*x^4 - 5329525399*x^5 + 10436766264*x^6 - 10665532740*x^7 + 4242318048*x^8 - 362880*x^9) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 8*x)*(1 - 9*x)) + O(x^40)) \\ Colin Barker, Jan 05 2018
Formula
G.f.: x^10 *(362880*x^9 -4242318048*x^8 +10665532740*x^7 -10436766264*x^6 +5329525399*x^5 -1580780268*x^4 +282366820*x^3 -29937606*x^2 +1734721*x -42294) / Product_{j=1..9} (j*x-1).
a(n) = 45*a(n-1) - 870*a(n-2) + 9450*a(n-3) - 63273*a(n-4) + 269325*a(n-5) - 723680*a(n-6) + 1172700*a(n-7) - 1026576*a(n-8) + 362880*a(n-9) for n>19. - Colin Barker, Jan 05 2018