A271751 Period 10 zigzag sequence; repeat: [0, 1, 2, 3, 4, 5, 4, 3, 2, 1].
0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,-1,1).
Crossrefs
Programs
-
Magma
&cat[[0, 1, 2, 3, 4, 5, 4, 3, 2, 1]: n in [0..10]];
-
Maple
a:=n->[0, 1, 2, 3, 4, 5, 4, 3, 2, 1][(n mod 10)+1]: seq(a(n), n=0..100);
-
Mathematica
CoefficientList[Series[x*(1 + x + x^2 + x^3 + x^4)/(1 - x + x^5 - x^6), {x, 0, 30}], x]
-
PARI
a(n) = abs(n-10*round(n/10)); \\ Altug Alkan, Apr 13 2016
Formula
G.f.: x*(1 + x + x^2 + x^3 + x^4)/(1 - x + x^5 - x^6).
a(n) = a(n-1) - a(n-5) + a(n-6) for n>5.
a(n) = abs(n - 10*round(n/10)).
a(n) = Sum_{i=1..n} (-1)^floor((i-1)/5).
a(2n) = 2*abs(A117444(n)).
a(2n+7) = 2*A076839(n)-1 for n>0.
a(n) = a(n-10) for n >= 10. - Wesley Ivan Hurt, Sep 07 2022
Comments