A271753 Number of set partitions of [n+2] such that n is the largest element of the last block.
0, 1, 6, 29, 139, 692, 3627, 20085, 117488, 724731, 4703699, 32043002, 228572813, 1703454469, 13235230990, 106997762361, 898404819935, 7821618182572, 70498093658879, 656892909516441, 6319385054660256, 62688326727955007, 640525850674446471, 6733883466256420010
Offset: 1
Keywords
Examples
a(3) = 6: 1245|3, 145|23, 145|2|3, 14|25|3, 15|24|3, 1|245|3. a(4) = 29: 12356|4, 1256|34, 1256|3|4, 125|36|4, 126|35|4, 12|356|4, 1356|24, 1356|2|4, 135|26|4, 136|25|4, 13|256|4, 156|234, 156|23|4, 15|236|4, 16|235|4, 1|2356|4, 156|2|34, 15|26|34, 16|25|34, 1|256|34, 156|2|3|4, 15|26|3|4, 15|2|36|4, 16|25|3|4, 1|256|3|4, 1|25|36|4, 16|2|35|4, 1|26|35|4, 1|2|356|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..575
- Wikipedia, Partition of a set
Crossrefs
A diagonal of A271466.
Formula
a(n) = A271466(n+2,n).