A271762 Number of set partitions of [n] with minimal block length multiplicity equal to two.
1, 0, 3, 0, 55, 105, 945, 1218, 15456, 26785, 705573, 2502786, 32988670, 169561483, 1757881723, 10231748010, 84389906941, 540218433147, 6899156019034, 41756989590256, 554960234199955, 4793361957432730, 59690079139252499, 558283841454550850, 7093218105977514525
Offset: 2
Keywords
Examples
a(4) = 3: 12|34, 13|24, 14|23.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..576
- Wikipedia, Partition of a set
Crossrefs
Column k=2 of A271424.
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, k)/j!, j={0, $k..n/i}))) end: a:= n-> b(n$2, 2)-b(n$2, 3): seq(a(n), n=2..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]]; a[n_] := b[n, n, 2] - b[n, n, 3]; Table[a[n], {n, 2, 30}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
Formula
a(n) = A271424(n,2).