A271763 Number of set partitions of [n] with minimal block length multiplicity equal to three.
1, 0, 0, 15, 0, 0, 1540, 3150, 24255, 81235, 496210, 605605, 36987951, 13833820, 849333940, 24419945732, 111237098546, 1219799147204, 16146398449224, 109697049177254, 1037441240056529, 9042707959752775, 84237798887033660, 614681985047225810
Offset: 3
Keywords
Examples
a(6) = 15: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 13|25|46, 13|26|45, 14|23|56, 15|23|46, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..576
- Wikipedia, Partition of a set
Crossrefs
Column k=3 of A271424.
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, k)/j!, j={0, $k..n/i}))) end: a:= n-> b(n$2, 3)-b(n$2, 4): seq(a(n), n=3..30);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]]; a[n_] := b[n, n, 3] - b[n, n, 4]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
Formula
a(n) = A271424(n,3).