A271769 Number of set partitions of [n] with minimal block length multiplicity equal to nine.
1, 0, 0, 0, 0, 0, 0, 0, 0, 34459425, 0, 0, 0, 0, 0, 0, 0, 0, 3139051466175625, 452214824811750, 7749317679728625, 2980506799895625, 284294494759275000, 16245399700530000, 12231973704514063500, 75947243599977750, 558368602431954063750, 668351312267239068593125
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..578
- Wikipedia, Partition of a set
Crossrefs
Column k=9 of A271424.
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) *b(n-i*j, i-1, k)/j!, j={0, $k..n/i}))) end: a:= n-> b(n$2, 9)-b(n$2, 10): seq(a(n), n=9..40);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]]; a[n_] := b[n, n, 9] - b[n, n, 10]; Table[a[n], {n, 9, 40}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
Formula
a(n) = A271424(n,9).