cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A271840 Primes of the form n^3 + 2n^2 + 5n + 11.

Original entry on oeis.org

11, 19, 37, 71, 127, 211, 487, 691, 947, 2087, 3217, 3911, 6581, 7687, 10259, 15107, 17011, 19069, 23671, 26227, 28961, 67411, 83431, 130261, 182179, 270667, 283411, 310087, 324031, 353161, 368359, 383987, 400051, 505927, 544979, 565237, 629011, 651289, 721267
Offset: 1

Views

Author

K. D. Bajpai, Apr 15 2016

Keywords

Examples

			n = 5, n^3 + 2*n^2 + 5*n + 11 = 211 that is prime.
n = 7, n^3 + 2*n^2 + 5*n + 11 = 487 that is prime.
		

Crossrefs

Intersection of A000040 and A271779.

Programs

  • Magma
    [k: n in [0..100] | IsPrime(k) where k is n^3+2*n^2+5*n+11];
  • Maple
    A271840:= n-> (n^3+2*n^2+5*n+11): select(isprime, [seq((A271840 (n), n=0..200))]);
  • Mathematica
    Select[Table[n^3 + 2*n^2 + 5*n + 11, {n, 0, 200}], PrimeQ]
  • PARI
    for(n=0,200,k = n^3+2*n^2+5*n+11; if(isprime(k), print1(k," ")))
    
Showing 1-1 of 1 results.