cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A272062 Positive numbers k such that k^2 - 1 divides 8^k - 1.

Original entry on oeis.org

2, 4, 8, 10, 16, 22, 36, 40, 64, 96, 100, 196, 210, 256, 280, 316, 456, 560, 820, 1200, 1236, 1296, 1360, 1408, 1600, 1870, 2380, 2556, 3516, 3616, 4096, 4200, 4356, 5656, 6112, 6256, 6480, 8008, 8688, 10192, 10356, 11440, 11952, 12160, 13728, 14950, 16192, 17020, 19432, 21880, 22036
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2016

Keywords

Comments

From Robert Israel, Jun 08 2018: (Start)
All terms are even.
Are 2, 8 and 560 the only terms == 2 (mod 6)? There are no others up to 3*10^9. (End)

Examples

			a(1) = 2 because (8^2 - 1)/(2^2 - 1) = 21.
		

Crossrefs

Cf. positive numbers n such that n^2 - 1 divides (2^k)^n - 1: A247219 (k=1), A271842 (k=2), this sequence (k=3).

Programs

  • Magma
    [0] cat [n: n in [2..30000] | Denominator((8^n-1)/(n^2-1)) eq 1];
    
  • Maple
    A272062:=n->`if`((8^n-1) mod (n^2-1) = 0, n, NULL): seq(A272062(n), n=2..5*10^4); # Wesley Ivan Hurt, Apr 21 2016
  • Mathematica
    Select[Range[2, 22100], Divisible[8^# - 1, #^2 - 1] &] (* Michael De Vlieger, Apr 19 2016 *)
  • PARI
    is(n)=Mod(8,n^2-1)^n==1 \\ Charles R Greathouse IV, Apr 19 2016

A281363 Smallest m>0 such that (2*n)^2 - 1 divides (2^m)^(2*n) - 1.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 1, 4, 9, 3, 55, 90, 9, 14, 5, 30, 1, 18, 3, 10, 21, 6, 161, 84, 2, 130, 45, 9, 29, 30, 3, 2, 33, 11, 35, 90, 15, 5, 351, 27, 82, 28, 7, 22, 15, 90, 3, 120, 3, 50, 51, 6, 53, 18, 9, 154, 33, 12, 11, 110, 25, 50, 7, 7, 195, 18, 9, 34, 69
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 30 2016

Keywords

Examples

			a(3) = 2 because (2*3)^2 - 1 = 35 divides (2^2)^(2*3) - 1 = 4095.
		

Crossrefs

Cf. positive numbers n such that n^2 - 1 divides (2^k)^n - 1: A247219 (k=1), A271842 (k=2), A272062 (k=3).

Programs

  • Mathematica
    Table[SelectFirst[Range@ 1200, Divisible[(2^#)^(2 n) - 1, (2 n)^2 - 1] &], {n, 84}] (* Michael De Vlieger, May 01 2016, Version 10 *)
    a[n_] := Block[{m=1}, While[ PowerMod[2^m, 2*n, 4*n^2-1] != 1, m++]; m]; Array[a, 100] (* Giovanni Resta, May 05 2016 *)
  • Python
    def A281363(n):
        m, q = 1, 4*n**2-1
        p = pow(2, 2*n, q)
        r = p
        while r != 1:
            m += 1
            r = (r*p) % q
        return m # Chai Wah Wu, Jan 28 2017
Showing 1-2 of 2 results.