cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A323692 G.f. satisfies: A(x) = x + A( A(x)^3 + A(x)^4 ).

Original entry on oeis.org

1, 0, 1, 1, 3, 7, 16, 45, 111, 311, 834, 2329, 6521, 18429, 52667, 151095, 437178, 1270035, 3710065, 10882077, 32044740, 94700739, 280749180, 834793837, 2488822697, 7438604115, 22283235185, 66893731444, 201208674387, 606321286160, 1830213820180, 5533440540954, 16754840359013, 50803933761199, 154251935227044, 468929198610654, 1427240650197467, 4348833380280444, 13265036911604648, 40502401300634184
Offset: 1

Views

Author

Paul D. Hanna, Feb 16 2019

Keywords

Comments

Compare to: C(x) = x + C( C(x)^2 - C(x)^4 ) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
Compare to: F(x) = x + F( F(x)^3 - F(x)^9 ) holds when F(x) = x + F(x)^3 is a g.f. of the ternary tree numbers (A001764).

Examples

			G.f.: A(x) = x + x^3 + x^4 + 3*x^5 + 7*x^6 + 16*x^7 + 45*x^8 + 111*x^9 + 311*x^10 + 834*x^11 + 2329*x^12 + 6521*x^13 + 18429*x^14 + 52667*x^15 + ...
such that A(x) = x + A( A(x)^3 + A(x)^4 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^4 + 2*x^5 + 7*x^6 + 16*x^7 + 39*x^8 + 110*x^9 + 277*x^10 + 786*x^11 + 2125*x^12 + 5996*x^13 + 16884*x^14 + 48044*x^15 + ...
A(x)^3 = x^3 + 3*x^5 + 3*x^6 + 12*x^7 + 27*x^8 + 70*x^9 + 198*x^10 + 510*x^11 + 1465*x^12 + 3999*x^13 + 11406*x^14 + 32328*x^15 + 92685*x^16 + ...
A(x)^4 = x^4 + 4*x^6 + 4*x^7 + 18*x^8 + 40*x^9 + 110*x^10 + 312*x^11 + 823*x^12 + 2392*x^13 + 6600*x^14 + 19032*x^15 + 54331*x^16 + ...
A(x)^3 + A(x)^4 = x^3 + x^4 + 3*x^5 + 7*x^6 + 16*x^7 + 45*x^8 + 110*x^9 + 308*x^10 + 822*x^11 + 2288*x^12 + 6391*x^13 + 18006*x^14 + 51360*x^15 + ...
A(x^3 + x^4) = x^3 + x^4 + x^9 + 3*x^10 + 3*x^11 + 2*x^12 + 4*x^13 + 6*x^14 + 7*x^15 + 16*x^16 + 30*x^17 + 37*x^18 + 57*x^19 + 108*x^20 + ...
where Series_Reversion(A(x)) = x - A(x^3 + x^4).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=1, n, A = x + subst(A, x, A^3 + A^4 +x*O(x^n))); polcoeff(H=A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. satisfies:
(1) A(x - A(x^3 + x^4)) = x.
(2) A(x) = x + Sum_{n>=0} d^n/dx^n A(x^3+x^4)^(n+1) / (n+1)!.
(3) A(x) = x * exp( Sum_{n>=0} d^n/dx^n A(x^3+x^4)^(n+1)/x / (n+1)! ).
(4) A(x) = x + G(x) + G(G(x)) + G(G(G(x))) + G(G(G(G(x)))) + ... where G(x) = A(x)^3 + A(x)^4.
Showing 1-1 of 1 results.