A271859 Six steps forward, five steps back.
0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 8, 7, 8, 9, 10, 11
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Maple
A271859:=n->add((-1)^floor((2*i-2)/11), i=1..n): seq(A271859(n), n=0..200);
-
Mathematica
Table[Sum[(-1)^Floor[(2 i - 2)/11], {i, n}], {n, 0, 100}]
-
PARI
concat(0, Vec(x*(1+x+x^2+x^3+x^4+x^5-x^6-x^7-x^8-x^9-x^10) / ((1-x)^2*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)) + O(x^50))) \\ Colin Barker, Apr 16 2016
Formula
a(n) = a(n-1) + a(n-11) - a(n-12) for n>11.
a(n) = Sum_{i=1..n} (-1)^floor((2*i-2)/11).
G.f.: x*(1+x+x^2+x^3+x^4+x^5-x^6-x^7-x^8-x^9-x^10) / ((1-x)^2*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)). - Colin Barker, Apr 16 2016