A271926 Denominator of (Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).
1, 1, 13, 19, 95, 155, 5735, 49321, 345247, 11137, 97051, 175741, 12829093, 164988103, 164988103, 306406477, 2286263713, 235485162439, 25667882705851, 420784962391, 420784962391, 8773680484481, 166699929205139, 317414933691977, 16706049141683, 31931815448027, 5013295025340239
Offset: 1
Examples
3, 5, 87/13, 156/19, 913/95, 1693/155, 69769/5735, 658529/49321, 5002953/345247, 173619/11137, 1616141/97051, 3107877/175741, 239756907/12829093, ...
Links
- J. de Gier, Loops, matchings and alternating-sign matrices, arXiv:math.CO/0211285, 2002.
Programs
-
Maple
f3:=proc(n) local j; (mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end; t3:=[seq(f3(n),n=1..50)]; map(numer,t3); map(denom,t3);
-
Mathematica
Table[Product[(2*j+1)*(3*j+4)/((j+1)*(6*j+1)),{j,0,n-1}]-1, {n,1,20}]//Denominator (* Vaclav Kotesovec, Oct 13 2017 *)