cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271939 Number of edges in the n-th order Sierpinski carpet graph.

Original entry on oeis.org

8, 88, 776, 6424, 52040, 418264, 3351944, 26833048, 214716872, 1717892440, 13743611912, 109950312472, 879606751304, 7036866765016, 56294972383880, 450359893862296, 3602879495272136, 28823036995298392, 230584299061751048, 1844674401792100120
Offset: 1

Views

Author

Emeric Deutsch, Apr 17 2016

Keywords

Comments

Also the number of maximal and maximum cliques in the n-Sierpinski carpet graph. - Eric W. Weisstein, Dec 01 2017

Examples

			For n=1, the 1st-order Sierpinski carpet graph is an 8-cycle.
		

Crossrefs

Cf. A016140.
Cf. A001018 (number of vertices in the n-Sierpinski carpet graph).

Programs

  • Maple
    seq((1/5)*(8*(8^n-3^n)), n = 1 .. 20);
  • Mathematica
    Table[8 (8^n - 3^n)/5, {n, 20}] (* Eric W. Weisstein, Jun 17 2017 *)
    LinearRecurrence[{11, -24}, {8, 88}, 20] (* Eric W. Weisstein, Jun 17 2017 *)
    CoefficientList[Series[8/(1 - 11 x + 24 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 17 2017 *)
  • PARI
    x='x+O('x^99); Vec(8/((1-3*x)*(1-8*x))) \\ Altug Alkan, Apr 17 2016

Formula

a(n) = 8 * (8^n - 3^n)/5.
a(n) = 8 * A016140(n).
G.f.: 8*x / ( (8*x-1)*(3*x-1) ). - R. J. Mathar, Apr 17 2016
a(n) = 8*a(n-1) + 8*3^(n-1). - Allan Bickle, Nov 27 2022