cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271943 The sum of the widths of all bargraphs of semiperimeter n (n>=2).

Original entry on oeis.org

1, 3, 10, 33, 108, 353, 1154, 3776, 12371, 40586, 133337, 438641, 1444848, 4764919, 15731660, 51993074, 172003177, 569531599, 1887392588, 6259572697, 20775058670, 68997611310, 229298384183, 762475061094, 2536834093693, 8444728118220, 28125035969635, 93713472090623, 312392935140250, 1041790050460247, 3475597146726072
Offset: 2

Views

Author

Emeric Deutsch, May 21 2016

Keywords

Comments

The number of level steps in all bargraphs of semiperimeter n+1 for n>=2. A level step is a pair of adjacent horizontal steps. - Arnold Knopfmacher, Nov 04 2016

Examples

			a(4)=10 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and, clearly, the sum of their widths is 3+2+2+2+1=10.
		

Crossrefs

Programs

  • Maple
    g := (1/2)*(1-z)*(1-2*z-z^2-sqrt(1-4*z+2*z^2+z^4))/(z*sqrt(1-4*z+2*z^2+z^4)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 2 .. 35);
  • Mathematica
    Drop[CoefficientList[Series[(1 - x) (1 - 2 x - x^2 - Sqrt[1 - 4 x + 2 x^2 + x^4])/(2 x Sqrt[1 - 4 x + 2 x^2 + x^4]), {x, 0, 32}], x], 2] (* Michael De Vlieger, May 21 2016 *)

Formula

G.f.: (1 - z)*(1 - 2*z - z^2 - sqrt(1 - 4*z + 2*z^2 + z^4))/(2*z*sqrt(1 - 4*z + 2*z^2 + z^4)).
a(n) = Sum_{k>=1} k*A271942(n,k). D-finite with recurrence (n+1)*a(n) +(-6*n+1)*a(n-1) +(9*n-14)*a(n-2) -2*a(n-3) +(-n+11)*a(n-4) +(-2*n+9)*a(n-5) +(-n+6)*a(n-6)=0. - R. J. Mathar, Jun 02 2016