A271979 G_8(n), where G is the Goodstein function defined in A266201.
0, 211, 3325, 555551, 77777775, 20000000211, 30000003325, 50000555551, 70077777775, 100000000211, 100000003325, 100000555551, 100077777775
Offset: 3
Keywords
Examples
Calculate G_8(5): G_1(5) = B_2(5)-1 = B_2(2^2+1)-1 = 27; G_2(5) = B_3(3^3)-1 = 4^4-1 = 255; G_3(5) = B_4(3*4^3 + 3*4^2 + 3*4 + 3)-1 = 3*5^3 + 3*5^2 + 3*5 + 3-1 = 467; G_4(5) = B_5(3*5^3 + 3*5^2 + 3*5 + 2)-1 = 3*6^3 + 3*6^2 + 3*6 + 2-1 = 775; G_5(5) = B_6(3*6^3 + 3*6^2 + 3*6 + 1)-1 = 3*7^3 + 3*7^2 + 3*7 + 1-1 = 1197; G_6(5) = B_7(3*7^3 + 3*7^2 + 3*7)-1 = 3*8^3 + 3*8^2 + 3*8-1 = 1751; G_7(5) = B_8(3*8^3 + 3*8^2 + 2*8 + 7)-1 = 3*9^3 + 3*9^2 + 2*9 + 7-1 = 2454; G_8(5) = B_9(3*9^3 + 3*9^2 + 2*9 + 6)-1 = 3*10^3 + 3*10^2 + 2*10 + 6-1 = 3325.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 3..16
- Wikipedia, Goodstein's theorem
Crossrefs
Programs
-
Python
from sympy.ntheory.factor_ import digits def bump(n,b): s=digits(n,b)[1:] l=len(s) return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i]) def A271979(n): if n==3: return 0 for i in range(2,10): n=bump(n,i)-1 return n # Pontus von Brömssen, Sep 25 2020
Extensions
Incorrect program and terms removed by Pontus von Brömssen, Sep 25 2020
Comments