A271995 The Pnictogen sequence: a(n) = A018227(n)-3.
7, 15, 33, 51, 83, 115, 165, 215, 287, 359, 457, 555, 683, 811, 973, 1135, 1335, 1535, 1777, 2019, 2307, 2595, 2933, 3271, 3663, 4055, 4505, 4955, 5467, 5979, 6557, 7135, 7783, 8431, 9153, 9875, 10675, 11475, 12357, 13239, 14207, 15175, 16233, 17291, 18443
Offset: 2
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- Wikipedia, Pnictogen.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Cf. A018227.
Programs
-
Mathematica
LinearRecurrence[{2,1,-4,1,2,-1},{7,15,33,51,83,115},50] (* Harvey P. Dale, Oct 29 2023 *)
-
PARI
Vec(x^2*(7+x-4*x^2-2*x^3+x^4+x^5)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jun 19 2016, corrected Jun 26 2016
Formula
From Colin Barker, Jun 19 2016, corrected Jun 26 2016: (Start)
a(n) = (6*(-7+(-1)^n)+(25+3*(-1)^n)*n+12*n^2+2*n^3)/12.
a(n) = (n^3+6*n^2+14*n-18)/6 for n even.
a(n) = (n^3+6*n^2+11*n-24)/6 for n odd.
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6) for n>7.
G.f.: x^2*(7+x-4*x^2-2*x^3+x^4+x^5) / ((1-x)^4*(1+x)^2).
(End)
Comments