cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271995 The Pnictogen sequence: a(n) = A018227(n)-3.

Original entry on oeis.org

7, 15, 33, 51, 83, 115, 165, 215, 287, 359, 457, 555, 683, 811, 973, 1135, 1335, 1535, 1777, 2019, 2307, 2595, 2933, 3271, 3663, 4055, 4505, 4955, 5467, 5979, 6557, 7135, 7783, 8431, 9153, 9875, 10675, 11475, 12357, 13239, 14207, 15175, 16233, 17291, 18443
Offset: 2

Views

Author

Natan Arie Consigli, Jun 18 2016

Keywords

Comments

Terms up to 115 are the atomic numbers of the elements of group 15 in the periodic table. Those elements are also known as pnictogens.

Crossrefs

Cf. A018227.

Programs

  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{7,15,33,51,83,115},50] (* Harvey P. Dale, Oct 29 2023 *)
  • PARI
    Vec(x^2*(7+x-4*x^2-2*x^3+x^4+x^5)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jun 19 2016, corrected Jun 26 2016

Formula

From Colin Barker, Jun 19 2016, corrected Jun 26 2016: (Start)
a(n) = (6*(-7+(-1)^n)+(25+3*(-1)^n)*n+12*n^2+2*n^3)/12.
a(n) = (n^3+6*n^2+14*n-18)/6 for n even.
a(n) = (n^3+6*n^2+11*n-24)/6 for n odd.
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6) for n>7.
G.f.: x^2*(7+x-4*x^2-2*x^3+x^4+x^5) / ((1-x)^4*(1+x)^2).
(End)