cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271996 The crystallogen sequence (a(n) = A018227(n)-4).

Original entry on oeis.org

6, 14, 32, 50, 82, 114, 164, 214, 286, 358, 456, 554, 682, 810, 972, 1134, 1334, 1534, 1776, 2018, 2306, 2594, 2932, 3270, 3662, 4054, 4504, 4954, 5466, 5978, 6556, 7134, 7782, 8430, 9152, 9874, 10674, 11474, 12356, 13238, 14206, 15174, 16232, 17290, 18442
Offset: 2

Views

Author

Natan Arie Consigli, Jun 18 2016

Keywords

Comments

Terms up to 114 are the atomic numbers of the elements of group 14 in the periodic table. Those elements are also called crystallogens.

Crossrefs

Programs

  • Mathematica
    Table[(6*(-9+(-1)^n)+(25+3*(-1)^n)*n+12*n^2+2*n^3)/12, {n, 2, 10}] (* or *) LinearRecurrence[{2, 1, -4, 1, 2, -1}, {6, 14, 32, 50, 82, 114}, 50] (* G. C. Greubel, Jun 23 2016 *)
  • PARI
    Vec(2*x^2*(3+x-x^2-2*x^3+x^5)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jun 19 2016

Formula

From Colin Barker, Jun 19 2016: (Start)
a(n) = (6*(-9 + (-1)^n) + (25 + 3*(-1)^n)*n + 12*n^2 + 2*n^3)/12.
a(n) = (n^3 + 6*n^2 + 14*n - 24)/6 for n even.
a(n) = (n^3 + 6*n^2 + 11*n - 30)/6 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>7.
G.f.: 2*x^2*(3 + x - x^2 - 2*x^3 + x^5) / ((1-x)^4*(1+x)^2).
(End)