A272000 Coinage sequence: a(n) = A018227(n)-7.
3, 11, 29, 47, 79, 111, 161, 211, 283, 355, 453, 551, 679, 807, 969, 1131, 1331, 1531, 1773, 2015, 2303, 2591, 2929, 3267, 3659, 4051, 4501, 4951, 5463, 5975, 6553, 7131, 7779, 8427, 9149, 9871, 10671, 11471, 12353, 13235, 14203, 15171, 16229, 17287, 18439
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Wikipedia, Group 11 element.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{2,1,-4,1,2,-1},{3,11,29,47,79,111},50] (* Harvey P. Dale, Nov 26 2018 *)
-
PARI
Vec(x*(3+5*x+4*x^2-10*x^3-3*x^4+5*x^5)/((1-x)^4*(1+x)^2) + O(x^60)) \\ Colin Barker, Oct 25 2016
Formula
From Colin Barker, Oct 25 2016: (Start)
G.f.: x*(3 + 5*x + 4*x^2 - 10*x^3 - 3*x^4 + 5*x^5)/((1 - x)^4*(1 + x)^2).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
a(n) = (n^3 + 9*n^2 + 26*n - 30)/6 for n even.
a(n) = (n^3 + 9*n^2 + 29*n - 21)/6 for n odd. (End)
Comments