cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272000 Coinage sequence: a(n) = A018227(n)-7.

Original entry on oeis.org

3, 11, 29, 47, 79, 111, 161, 211, 283, 355, 453, 551, 679, 807, 969, 1131, 1331, 1531, 1773, 2015, 2303, 2591, 2929, 3267, 3659, 4051, 4501, 4951, 5463, 5975, 6553, 7131, 7779, 8427, 9149, 9871, 10671, 11471, 12353, 13235, 14203, 15171, 16229, 17287, 18439
Offset: 1

Views

Author

Natan Arie Consigli, Jul 02 2016

Keywords

Comments

Terms from 29 to 111 are the atomic numbers of the elements of group 11 in the periodic table. The group is also known as the coinage metals since copper (element 29), silver (element 47) and gold (element 79) are in group 11.

Crossrefs

Other groups: 1(A219527), 2(A168380), 3(A168388), 12(A271998), 13(A271997), 14(A271996), 15(A271995), 16(A271994), 17(A271999), 18(A018227).

Programs

  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{3,11,29,47,79,111},50] (* Harvey P. Dale, Nov 26 2018 *)
  • PARI
    Vec(x*(3+5*x+4*x^2-10*x^3-3*x^4+5*x^5)/((1-x)^4*(1+x)^2) + O(x^60)) \\ Colin Barker, Oct 25 2016

Formula

From Colin Barker, Oct 25 2016: (Start)
G.f.: x*(3 + 5*x + 4*x^2 - 10*x^3 - 3*x^4 + 5*x^5)/((1 - x)^4*(1 + x)^2).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
a(n) = (n^3 + 9*n^2 + 26*n - 30)/6 for n even.
a(n) = (n^3 + 9*n^2 + 29*n - 21)/6 for n odd. (End)