A272020 Irregular triangle read by rows: strictly decreasing sequences of positive numbers given in lexicographic order.
1, 2, 2, 1, 3, 3, 1, 3, 2, 3, 2, 1, 4, 4, 1, 4, 2, 4, 2, 1, 4, 3, 4, 3, 1, 4, 3, 2, 4, 3, 2, 1, 5, 5, 1, 5, 2, 5, 2, 1, 5, 3, 5, 3, 1, 5, 3, 2, 5, 3, 2, 1, 5, 4, 5, 4, 1, 5, 4, 2, 5, 4, 2, 1, 5, 4, 3, 5, 4, 3, 1, 5, 4, 3, 2, 5, 4, 3, 2, 1, 6, 6, 1, 6, 2, 6, 2, 1
Offset: 0
Examples
Row n is given by the exponents in the binary expansion of 2*n. For example, row 5 = [3, 1] because 2*5 = 2^3 + 2^1. Row 0: [] Row 1: [1] Row 2: [2] Row 3: [2, 1] Row 4: [3] Row 5: [3, 1] Row 6: [3, 2] Row 7: [3, 2, 1]
Links
- Peter Kagey, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
T:= proc(n) local i, l, m; l:= NULL; m:= n; if n=0 then return [][] fi; for i while m>0 do if irem(m, 2, 'm')=1 then l:=i, l fi od; l end: seq(T(n), n=0..35); # Alois P. Heinz, Nov 27 2024
-
Mathematica
Table[Reverse[Join@@Position[Reverse[IntegerDigits[n,2]],1]],{n,0,100}] (* Gus Wiseman, Jan 17 2023 *)
Comments