cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272056 Decimal expansion of the variance of the degree (valency) of the root of a random rooted tree with n vertices.

Original entry on oeis.org

1, 4, 7, 4, 1, 7, 2, 6, 8, 6, 8, 9, 7, 8, 7, 3, 7, 3, 6, 3, 3, 4, 3, 4, 1, 8, 2, 3, 3, 9, 7, 5, 5, 0, 0, 1, 2, 8, 4, 9, 6, 2, 3, 6, 0, 4, 9, 5, 5, 5, 8, 0, 9, 0, 8, 0, 2, 0, 4, 2, 1, 8, 7, 8, 4, 5, 3, 9, 1, 3, 7, 3, 9, 6, 6, 5, 0, 0, 9, 3, 8, 7, 0, 2, 8, 1, 3, 6, 7, 2, 8, 6, 6, 6, 4, 0, 2, 7
Offset: 1

Views

Author

Jean-François Alcover, Apr 19 2016

Keywords

Examples

			1.47417268689787373633434182339755001284962360495558090802...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 303.

Crossrefs

Cf. A000081 (T_n), A051491 (alpha), A261124 (expected degree).

Programs

  • Mathematica
    Clear[v]; digits = 98; m0 = 400; dm = 100; v[max_] := v[max] = (Clear[T, s, a]; T[0] = 0; T[1] = 1; T[n_] := T[n] = Sum[Sum[d*T[d], {d, Divisors[j] }]*T[n - j], {j, 1, n - 1}]/(n - 1); s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n - 1, k]*k, {k, 1, n - 1}]/(n - 1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits + 5]; 1 + Sum[T[j]*(2 alpha^j - 1)/ (alpha^j*(alpha^j - 1)^2), {j, 1, max}]); v[m0]; v[max = m0 + dm]; While[ Print["max = ", max]; RealDigits[v[max], 10, digits] != RealDigits[ v[max - dm], 10, digits], max = max + dm]; RealDigits[v[max], 10, digits] // First

Formula

1 + Sum_{j>=1} T_j*(2alpha^j-1)/(alpha^j*(alpha^j-1)^2), where T_j is A000081(j) and alpha A051491.