cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272065 Number of set partitions of [n] such that at least one pair of consecutive blocks (b,b+1) exists having not exactly one pair of consecutive numbers (i,i+1) with i member of b and i+1 member of b+1.

Original entry on oeis.org

0, 0, 0, 0, 2, 17, 101, 545, 2935, 16351, 95335, 583373, 3745903, 25208633, 177505205, 1305468285, 10009943248, 79880835800, 662319435622, 5696570446421, 50749156111271, 467630493212126, 4451067568592918, 43709810099960739, 442331477265626019
Offset: 0

Views

Author

Alois P. Heinz, Apr 19 2016

Keywords

Examples

			a(4) = 2: 13|24, 13|2|4.
a(5) = 17: 124|35, 124|3|5, 134|25, 134|2|5, 135|24, 13|245, 13|24|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 14|25|3, 14|2|3|5, 1|24|35, 1|24|3|5.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m, l) option remember; `if`(n=0,
          `if`({l[], 1}={1}, 1, 0), add(`if`(j combinat[bell](n)-b(n, 0$2, []):
    seq(a(n), n=0..18);
  • Mathematica
    b[n_, i_, m_, l_] := b[n, i, m, l] = If[n == 0, If[Union[Append[l, 1]] == {1}, 1, 0], Sum[If[j < m+1 && j == i+1 && l[[j]] == 1, 0, b[n-1, j, Max[m, j], If[j == m+1, Append[l, If[j == i+1, 1, 0]], If[j == i+1, ReplacePart[l, j -> 1], l]]]], {j, 1, m+1}]]; a[n_] := BellB[n]-b[n, 0, 0, {}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 03 2017, translated from Maple *)

Formula

a(n) = A000110(n) - A272064(n).