cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272090 Number of chiral partitions of n; number of irreducible representations of the symmetric group S_n with nontrivial determinant.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 8, 12, 20, 8, 16, 24, 40, 32, 64, 88, 152, 16, 32, 48, 80, 64, 128, 192, 320, 128, 256, 384, 640, 512, 1024, 1360, 2384, 32, 64, 96, 160, 128, 256, 384, 640, 256, 512, 768, 1280, 1024, 2048, 2816, 4864, 512, 1024, 1536, 2560, 2048, 4096, 6144, 10240, 4096
Offset: 1

Views

Author

Amritanshu Prasad, May 10 2016

Keywords

Examples

			The sign representation and the two-dimensional representation of S_3 have nontrivial determinant, so a(3)=2.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0;
    a[n_] := Module[{bb, e, pos, k, r}, bb = Reverse[IntegerDigits[n, 2]]; e = bb[[1]]; pos = DeleteCases[Flatten[Position[bb, 1]], 1]-1; r = Length[ pos]; Do[k[i] = pos[[i]], {i, r}]; 2^Sum[k[i], {i, 2, r}] (2^(k[1]-1) + Sum[2^((v+1)(k[1]-2)-v(v-1)/2), {v, k[1]-1}] + e 2^(k[1] (k[1]-1)/2))];
    Array[a, 60] (* Jean-François Alcover, Aug 09 2018 *)
  • PARI
    a(n) = {if (n==1, 0, if (n % 2, ns = n-1; eps = 1, ns = n; eps = 0); b = Vecrev(binary(ns/2)); vk = select(x->(x != 0), b, 1); k1 = vk[1]; 2^sum(i=2, #vk, vk[i])*(2^(k1-1) + sum(v=1, k1-1, 2^((v+1)*(k1-2)-binomial(v,2))) + eps*2^binomial(k1,2)););} \\ Michel Marcus, May 11 2016

Formula

a(n) = A000041(n) - A045923(n).
If n = e + Sum_{i=1..r}2^ki in binary expansion, with e=0 or 1, 0