A272097 Decimal expansion of an infinite product involving the ratio of n! to its Stirling approximation.
1, 0, 0, 2, 6, 8, 7, 9, 1, 3, 2, 4, 1, 5, 2, 7, 9, 4, 1, 5, 8, 4, 3, 4, 5, 5, 4, 6, 4, 3, 4, 5, 2, 0, 9, 6, 1, 8, 1, 8, 1, 0, 4, 0, 3, 1, 9, 2, 3, 6, 7, 8, 8, 8, 3, 7, 2, 8, 6, 6, 5, 6, 7, 3, 8, 0, 6, 4, 7, 7, 8, 5, 0, 6, 2, 1, 1, 1, 0, 0, 7, 3, 8, 5, 3, 8, 1, 0, 9, 5, 8, 8, 6, 6, 7, 8, 2, 6, 3, 5, 8, 8, 0, 1, 9
Offset: 1
Examples
1.00268791324152794158434554643452096181810403192367888372866567380647785...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
Product[n!/(n^n/E^n*Sqrt[2*Pi*n]*(1 + 1/(12*n))), {n, 1, Infinity}] RealDigits[E^(1/12)*(2*Pi)^(1/4)*Gamma[13/12]/Glaisher^2, 10, 120][[1]]
Formula
Product_{n>=1} (n! / (sqrt(2*Pi*n) * n^n * exp(-n) * (1 + 1/(12*n)))).
Equals exp(1/12) * (2*Pi)^(1/4) * Gamma(1/12) / (12 * A^2), where A = A074962 is the Glaisher-Kinkelin constant.
Comments