cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272097 Decimal expansion of an infinite product involving the ratio of n! to its Stirling approximation.

Original entry on oeis.org

1, 0, 0, 2, 6, 8, 7, 9, 1, 3, 2, 4, 1, 5, 2, 7, 9, 4, 1, 5, 8, 4, 3, 4, 5, 5, 4, 6, 4, 3, 4, 5, 2, 0, 9, 6, 1, 8, 1, 8, 1, 0, 4, 0, 3, 1, 9, 2, 3, 6, 7, 8, 8, 8, 3, 7, 2, 8, 6, 6, 5, 6, 7, 3, 8, 0, 6, 4, 7, 7, 8, 5, 0, 6, 2, 1, 1, 1, 0, 0, 7, 3, 8, 5, 3, 8, 1, 0, 9, 5, 8, 8, 6, 6, 7, 8, 2, 6, 3, 5, 8, 8, 0, 1, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 20 2016

Keywords

Comments

Product_{k=1..n} (k! / (sqrt(2*Pi*k) * k^k * exp(-k))) ~ c * n^(1/12), where c = exp(1/12)*(2*Pi)^(1/4) / A^2 = A213080 = 1.04633506677050318098095065697776..., where A = A074962 is the Glaisher-Kinkelin constant.
Product_{n>=1} (n! / (sqrt(2*Pi*n) * n^n * exp(-n) * (1 + 1/(12*n) + 1/(288*n^2)))) = exp(1/12) * (2*Pi)^(1/4) * abs(Gamma(25/24 + i/24))^2 / A^2 = 0.997305599490607358564533726617761207426462854447669845..., where A = A074962 is the Glaisher-Kinkelin constant and i is the imaginary unit.

Examples

			1.00268791324152794158434554643452096181810403192367888372866567380647785...
		

Crossrefs

Programs

  • Mathematica
    Product[n!/(n^n/E^n*Sqrt[2*Pi*n]*(1 + 1/(12*n))), {n, 1, Infinity}]
    RealDigits[E^(1/12)*(2*Pi)^(1/4)*Gamma[13/12]/Glaisher^2, 10, 120][[1]]

Formula

Product_{n>=1} (n! / (sqrt(2*Pi*n) * n^n * exp(-n) * (1 + 1/(12*n)))).
Equals exp(1/12) * (2*Pi)^(1/4) * Gamma(1/12) / (12 * A^2), where A = A074962 is the Glaisher-Kinkelin constant.