A272098 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j-1,-n-1)*E1(j,k), E1 the Eulerian numbers A173018, for n >= 0 and 0 <= k <= n.
1, 2, 0, 4, 1, 0, 8, 7, 1, 0, 16, 33, 15, 1, 0, 32, 131, 131, 31, 1, 0, 64, 473, 883, 473, 63, 1, 0, 128, 1611, 5111, 5111, 1611, 127, 1, 0, 256, 5281, 26799, 44929, 26799, 5281, 255, 1, 0, 512, 16867, 131275, 344551, 344551, 131275, 16867, 511, 1, 0
Offset: 0
Examples
Triangle starts: [1] [2, 0] [4, 1, 0] [8, 7, 1, 0] [16, 33, 15, 1, 0] [32, 131, 131, 31, 1, 0] [64, 473, 883, 473, 63, 1, 0] [128, 1611, 5111, 5111, 1611, 127, 1, 0]
Links
- Peter Luschny, Extensions of the binomial
Programs
-
Maple
T := (n, k) -> add((-1)^(n-j)*combinat:-eulerian1(j,k)*binomial(-j-1,-n-1), j=0..n): seq(seq(T(n, k), k=0..n), n=0..10); # Or: egf := (exp(x)*(y - 1))/(y - exp(x*(y - 1))); ser := series(egf, x, 12): cx := n -> series(coeff(ser, x, n), y, n + 2): seq(seq(n!*coeff(cx(n), y, k), k = 0..n), n = 0..9); # Peter Luschny, Aug 14 2022
-
Mathematica
<
Emanuele Munarini, Oct 19 2023 *)
Formula
E.g.f.: (exp(x)*(y - 1))/(y - exp(x*(y - 1))). - Peter Luschny, Aug 14 2022
T(n,k) = Sum_{i=0..n} Binomial(n,i)*Eulerian(i,k), where Eulerian(n,k) = Eulerian numbers A173018. Equivalently, if T is the matrix generated by T(n,k), B is the binomial matrix and E is the Eulerian matrix, then T = B E. - Emanuele Munarini, Oct 19 2023