cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272100 Integers n that are the sum of three nonzero squares while n*(n+1) is not.

Original entry on oeis.org

12, 19, 44, 51, 76, 83, 108, 115, 140, 147, 172, 179, 204, 211, 236, 243, 268, 275, 300, 307, 332, 339, 364, 371, 396, 403, 428, 435, 460, 467, 492, 499, 524, 531, 556, 563, 588, 595, 620, 627, 652, 659, 684, 691, 716, 723, 748, 755, 780, 787, 812, 819, 844, 851, 876, 883, 908, 915
Offset: 1

Views

Author

Altug Alkan, Apr 20 2016

Keywords

Comments

Values of a^2 + b^2 + c^2 such that (a^2 + b^2 + c^2)^2 + a^2 + b^2 + c^2 is not of the form x^2 + y^2 + z^2 where a, b, c, x, y, z are nonzero integers.
First differences of this sequence are 7, 25, 7, 25, 7, 25, 7, 25, 7, 25, ...

Examples

			12 is a term because 12 = 2^2 + 2^2 + 2^2 = A000408(5) and 12*13 = A002378(12) = 156 is not in A000408.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], Length[PowersRepresentations[#, 3, 2] /. {0, } -> Nothing] > 0 && Length[PowersRepresentations[# (# + 1), 3, 2] /. {0, } -> Nothing] == 0 &] (* Michael De Vlieger, Apr 20 2016, Version 10.2 *)
    LinearRecurrence[{1,1,-1},{12,19,44},60] (* Harvey P. Dale, Mar 13 2017 *)
  • PARI
    isA000408(n) = my(a, b) ; a=1 ; while(a^2+1A000408(n) && !isA000408(n*(n+1)), print1(n, ", ")));
    
  • PARI
    Vec(x*(12+7*x+13*x^2)/((1-x)^2*(1+x)) + O(x^50)) \\ Colin Barker, Apr 30 2016

Formula

From Colin Barker, Apr 30 2016: (Start)
a(n) = (32*n-17-9*(-1)^n)/2.
a(n) = 16*n-13 for n even.
a(n) = 16*n-4 for n odd.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
G.f.: x*(12+7*x+13*x^2) / ((1-x)^2*(1+x)).
(End)